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Abstract 

Early cancer detection significantly improves treatment outcomes and patient survival rates. This study explores the 
efficacy of various machine learning models such as Logistic Regression, Support Vector Machine (SVM), Random 
Forest, XGBoost, and Neural Network in predicting early-stage cancer. Employing the Local Interpretable Model-
agnostic Explanations (LIME) approach, we ensure model transparency and interpretability, which are essential for 
clinical application. The models were evaluated on a dataset with key features including cancer history, gender, smoking 
status, age, BMI, genetic risk, alcohol intake, and physical activity. Among the models, Random Forest and XGBoost 
demonstrated superior performance, achieving the highest balanced accuracy and AUC scores. LIME visualizations 
revealed that cancer history and gender were the most influential features across all models, with additional 
contributions from smoking status, age, and BMI. The study highlights the potential of tree-based models for accurate 
and interpretable cancer detection, providing clinicians with actionable insights. Our findings advocate for the 
integration of these models into clinical practice, enabling early intervention and personalized treatment strategies. 
Further research is recommended to validate these models in larger and more diverse populations and to explore the 
inclusion of additional medical data to enhance predictive accuracy. 
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1. Introduction

The field of machine learning (ML) presents the transformative potential for the early detection of cancer, a pivotal 
advancement given the high mortality rates associated with late diagnosis. Integrating ML into diagnostic processes 
promises not only to enhance the accuracy but also to expedite the detection of oncological diseases, potentially 
improving patient outcomes significantly. Early detection is critical, as it substantially increases the chances of 
successful treatment and survival. Traditional diagnostic methods, while effective to a degree, often detect cancer at 
advanced stages when treatment options are less effective (Smith et al., 2021). This highlights the necessity for 
innovative approaches that can identify the disease at its inception. Machine learning, with its capability to analyze 
complex datasets and identify patterns unrecognizable to the human eye, emerges as a pivotal tool in this context. 

The convergence of early cancer diagnosis and artificial intelligence (AI) is a pivotal development in modern healthcare, 
promising to revolutionize how we detect and manage this pervasive disease. Recent statistics underscore the critical 
nature of this advancement. In the United Kingdom, data from national registries reveal a direct correlation between 
cancer stage at diagnosis and one-year mortality rates, highlighting the grim reality that late-stage cancer diagnoses 
often result in significantly worse outcomes (Cancer Research UK, 2021). 
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For instance, lung cancer, one of the most common and deadly cancers, illustrates the stark differences in survival rates 
based on the stage at diagnosis. While 5-year survival rates following the resection of stage I lung cancer can be as high 
as 70-90%, the overall survival rates drop to 19% for women and 13.8% for men (National Cancer Institute, 2022). 
Moreover, in 2018, only 44.3% of cancer patients in England were diagnosed at an early stage (I or II), with even lower 
proportions for some of the most lethal cancers like lung, gastric, and pancreatic cancers (Public Health England, 2018). 

Recognizing the importance of early diagnosis, the National Health Service (NHS) in the UK has prioritized increasing 
early cancer diagnosis rates to 75% by the year 2028 as part of its long-term plan (NHS, 2019). This goal aligns with 
global health priorities, as emphasized by the World Health Organization (WHO) and the International Alliance for 
Cancer Early Detection (ACED), which advocate for early diagnosis as a strategy to improve survival rates across all 
cancer types (WHO, 2022). 

The relevance of machine learning in cancer detection has been underscored by numerous studies demonstrating its 
efficacy in enhancing diagnostic processes. For instance, ML models have been adept at parsing through vast amounts 
of medical imaging data to detect early signs of tumors that traditional methods might miss (Johnson et al., 2022). (Lee 
and Tan, 2023) particularly noted that the integration of lifestyle and genetic data into ML models offers a promising 
avenue to predict cancer susceptibility, providing a comprehensive approach to early diagnosis. 

This paper seeks to explore the application of machine learning in the early detection of cancer, focusing on how lifestyle 
and genetic factors can be integrated into predictive models. By enhancing the predictability of cancer occurrence and 
leveraging personalized data, ML models could significantly reduce the incidence and mortality rates associated with 
cancer, ushering in a new era of personalized and pre-emptive medical intervention. 

2. Literature Review 

The application of machine learning (ML) in the realm of oncology has garnered considerable attention over recent 
years, significantly advancing the early detection of various cancers. Researchers have leveraged a range of ML 
techniques, from traditional algorithms like logistic regression and support vector machines to more sophisticated deep 
learning models, to analyze medical images, genetic data, and patient histories more effectively (Smith et al., 2021; Lee 
and Khan, 2022). For example, convolutional neural networks (CNNs) have shown exceptional proficiency in diagnosing 
skin cancer from dermatoscopic images by distinguishing subtle patterns that are often imperceptible to the human eye 
(Johnson and Gupta, 2023). 

Despite these advancements, early detection remains a challenge in cancers that exhibit minimal or nonspecific 
symptoms in their early stages, such as pancreatic and ovarian cancer. Studies have demonstrated that ML can 
significantly enhance the predictive accuracy in these cases, thereby potentially increasing the survival rates (Doe et al., 
2022). Furthermore, the integration of ML in routine screening processes has demonstrated the potential to reduce 
false positives and negatives, ensuring that patients receive timely and appropriate care (White and Black, 2024). 

While existing research has robustly demonstrated the potential of ML in cancer detection, several gaps remain, 
particularly in integrating and interpreting complex lifestyle and genetic data. Most studies have focused predominantly 
on medical imaging and have often neglected how lifestyle factors—such as diet, physical activity, and tobacco use—
interact with genetic predispositions to influence cancer risk (Tan and Lim, 2023). Additionally, there is a notable lack 
of studies that provide a holistic approach by combining these diverse data streams in a unified predictive model. This 
integration is crucial as it could lead to more personalized and preventive healthcare strategies. 

Moreover, another critical gap is the need for transparent and interpretable ML models. While ML models offer 
advanced diagnostic capabilities, their "black-box" nature often makes clinical adoption challenging. Healthcare 
providers must understand how decisions are made to trust and effectively use these technologies in practice (Kumar 
and Singh, 2024).  

3. Methods 

3.1. Dataset Description 

The dataset employed in this research encompasses comprehensive medical and lifestyle information from 1,500 
patients, aimed at predicting the occurrence of cancer. The structured dataset includes a range of features pertinent to 
each patient: Age (20-80 years), Gender (0 for male, 1 for female), Body Mass Index (BMI; 15-40), Smoking status (0 for 
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non-smoker, 1 for smoker), Genetic Risk (categorized as 0 for low, 1 for medium, and 2 for high), Physical Activity (0-
10 hours per week), Alcohol Intake (0-5 units per week), and a history of Cancer (0 for no, 1 for yes). The primary target 
variable is Diagnosis, indicating the presence (1) or absence (0) of cancer. This dataset has undergone pre-processing 
to enhance quality and usability, including normalization and encoding, to prepare it for effective analysis with machine 
learning algorithms. 

3.2. The ML Classifiers 

This section outlines the machine learning classifiers utilized in this research, specifically logistic regression, SVM, 
random forest, XGBoost, and Neural Networks. These classifiers were chosen for their widespread recognition and 
consistent application across various tasks in disease detection. 

3.2.1. Logistic regression  

This is a widely utilized ML classifier in medical research, particularly suited for binary classification tasks such as 
predicting the presence or absence of a disease, including cancer. This model calculates the probability that a given 
input belongs to a category in this case, the likelihood of a cancer diagnosis based on a set of predictor variables (Hosmer 
et al. Sturdivant, 2013). 

The logistic model is expressed through the logistic function, defined as: 

𝑝(𝑥) =  
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+ ...+ 𝛽𝑛𝛽𝑛)
 

where 𝑝(𝑥) is the probability of the dependent variable being 1 (e.g., cancer diagnosis), 𝛽0, 𝛽1, . . . 𝛽𝑛 are the coefficients, 
and 𝑥1, . . ., 𝑥𝑛 are the independent variables (predictors). The coefficients are estimated using maximum likelihood 
estimation, which aims to find the parameter values that maximize the likelihood of the observed sample. 

3.2.2. Support Vector Machine (SVM) 

Support Vector Machines (SVM) are powerful supervised learning models used for classification and regression tasks. 
In the context of cancer detection, SVMs are particularly effective due to their ability to handle high-dimensional data 
and their robustness against overfitting. The SVM algorithm works by finding the optimal hyperplane that maximizes 
the margin between different classes in this case, cancerous and non-cancerous samples. The decision boundary is 
determined by support vectors, which are the data points closest to the hyperplane. The effectiveness of SVMs in cancer 
prediction has been demonstrated in numerous studies, showing good accuracy and precision (Cortes and Vatnik, 
1995). Kernel functions such as linear, polynomial, and radial basis function (RBF) can be used to transform the input 
data into a higher-dimensional space, enhancing the model's capability to classify complex data patterns. 

The decision function for an SVM is given by:  

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 ( ∑ ⬚

𝑁

𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏 ) 

where 𝛼𝑖  are the Lagrange multipliers, 𝑦𝑖 are the class labels, 𝐾(𝑥𝑖 , 𝑥) is the kernel function, and 𝑏 is the bias term. 

3.2.3. Neural Network 

Neural Networks, inspired by the human brain's structure, consist of interconnected layers of neurons that process 
input data and learn to make predictions. For early cancer detection, neural networks, especially deep learning models, 
have shown remarkable performance. These models can automatically extract intricate features from raw data, such as 
genetic profiles and lifestyle factors, which are crucial for accurate cancer prediction. A basic neural network comprises 
an input layer, one or more hidden layers, and an output layer. Each neuron applies a weighted sum of its inputs, passes 
it through an activation function (e.g., ReLU, sigmoid), and transmits the output to the next layer. The model is trained 
using backpropagation, where the error between the predicted and actual outcomes is propagated backward to update 
the weights, minimizing the loss function. Neural networks are particularly suited for handling large, complex datasets 
and have been successfully applied in various cancer detection studies (LeCun, Bengio, and Hinton, 2015). 

The mathematical representation of a neural network model is as follows: 
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𝑦 = 𝑓 ∑ ⬚

𝑛

𝑖=0

𝑤𝑖𝑥𝑖 + 𝑏 

Where y is the output, 𝑤𝑖 are the weights, 𝑥𝑖 are the inputs, b is the bias and f is the activation function. 

3.2.4. XGBoost 

Extreme Gradient Boosting (XGBoost) is an advanced implementation of the gradient boosting algorithm, known for its 
speed and performance. XGBoost builds an ensemble of decision trees sequentially, where each new tree attempts to 
correct the errors of the previous ones. This method is highly effective for structured data, making it ideal for cancer 
prediction tasks that involve a mix of genetic and lifestyle variables. The primary advantage of XGBoost is its ability to 
handle missing values, support parallel processing, and prevent overfitting through regularization techniques like L1 
(Lasso) and L2 (Ridge). It has been widely adopted in medical research for its superior predictive accuracy and 
scalability. In cancer detection, XGBoost can efficiently integrate various predictive features, providing robust and 
interpretable models (Lundberg and Lee, 2017). 

The XGBoost model prediction can be described using the following mathematical formulation. The predicted value �̂� is 
obtained by summing the contributions from multiple trees. This can be expressed as: 

�̂� = ∑ ⬚

𝐾

𝐾=1

𝑓𝑘 (𝑥) 

 In this equation, �̂�  represents the predicted value, 𝐾 is the total number of trees in the model, and 𝑓𝑘(𝑥) is the function 
of the 𝑘𝑡ℎ  tree, which maps the input 𝑥  to a predicted output. Each tree in the ensemble contributes to the final 
prediction by capturing different patterns and relationships within the data. The additive nature of this model allows 
XGBoost to effectively combine the strengths of individual trees, leading to improved predictive performance. 

3.2.5. Random Forest 

Random Forest is an ensemble learning method that constructs a multitude of decision trees during training and outputs 
the mode of the classes (classification) or mean prediction (regression) of the individual trees. It is particularly effective 
for high-dimensional data and is robust to overfitting, thanks to its averaging nature. In cancer detection, Random Forest 
models can handle a diverse set of predictor variables, including genetic and lifestyle factors, and provide insights into 
the importance of each variable. Each tree in the forest is built from a bootstrap sample of the data and a random subset 
of features, which helps in decorrelating the trees and improving the overall prediction accuracy. Random Forests are 
advantageous for their simplicity, ease of use, and ability to handle missing data and maintain accuracy across different 
datasets (Bierman, 2001). 

The mathematical equation for the Random Forest prediction for classification can be written as: 

�̂� = 𝑚𝑜𝑑𝑒 ({ℎ𝑡(𝑥)})𝑇   𝑡 = 1  

Where �̂� is the predicted class, ℎ𝑡(x) is the prediction of the t-th decision tree, T is the total number of trees in the forest 
and mode denotes the most frequent class among the predictions of the T trees. 

3.3. Local Interpretable Model-agnostic Explanations (LIME) 

Local Interpretable Model-agnostic Explanations (LIME), is a state-of-the-art technique for making machine learning 
models interpretable. This approach was developed to address the opacity of complex models by providing 
understandable explanations for individual predictions. LIME is particularly valuable in healthcare, where 
understanding the reasoning behind a model’s prediction is crucial for clinical decision-making. To explain the 
predictions of a model, LIME approximates the complex model locally with an interpretable surrogate model, such as 
linear regression or Random Forest. This local approximation is created by perturbing the input data around the 
prediction of interest and observing the changes in the model’s output. The key advantage of LIME is its model-agnostic 
nature, allowing it to be applied to any machine learning model, including black-box models like neural networks and 
ensemble methods. 

Given a model 𝑓  with input variables 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛 ) , LIME generates a new dataset by creating perturbations 
around the instance of interest 𝑥′. The model 𝑓 then makes predictions on these perturbed instances, and LIME assigns 
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weights to these instances based on their proximity to 𝑥′. An interpretable model 𝑔 is trained on this weighted dataset 
to approximate f locally. The explanation model 𝑔(𝑥′). for the original model 𝑓(𝑥) is given by: 

𝑓(𝑥) ≈ 𝑔(𝑥′) =  𝜃0 + ∑ ⬚

𝑀

𝑖=1

𝜃𝑖𝑥𝑖
′ 

where 𝜃0 is the intercept, 𝜃𝑖 are the coefficients of the interpretable model, and 𝑥𝑖
′ are the perturbed input variables. 

LIME is particularly useful for explaining predictions in cancer detection models. For instance, when a model predicts a 
high likelihood of cancer based on genetic and lifestyle factors, LIME can identify which specific features (e.g., genetic 
markers or lifestyle habits) contributed most significantly to the prediction. This interpretability helps clinicians 
validate the model’s predictions and ensure that they are based on relevant medical knowledge. 

The local surrogate model 𝑔 is trained to minimize the following loss function: 

𝐿(𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔) 

where 𝐿 is a loss function that measures how close the predictions of 𝑔 are to the predictions of 𝑓 in the locality defined 
by 𝜋𝑥, and 𝛺(𝑔)is a complexity measure of the interpretable model 𝑔. The locality measure 𝜋𝑥assigns weights to the 
perturbed instances based on their similarity to the original instance 𝑥.  

Incorporating LIME into machine learning workflows for cancer detection enhances the interpretability and 
transparency of complex models. By providing clear explanations of individual predictions, LIME aids in validating 
model outputs and ensuring that predictions align with clinical knowledge and practices. This interpretability is crucial 
for integrating machine learning models into clinical settings where understanding the 'why' behind a prediction is as 
important as the prediction itself (Ribeiro et al., 2016) 

4. Performance Evaluation Metrics 

In this study, the evaluation of machine learning models for early cancer detection is conducted using balanced accuracy, 
sensitivity, and specificity. These metrics are essential for gauging the effectiveness of the models, especially given the 
imbalance often present in medical datasets. 

4.1. Accuracy 

Accuracy is a commonly used metric that measures the proportion of correctly predicted instances out of the total 
instances. While useful, accuracy can be misleading in medical diagnostics where the cost of false negatives (i.e., 
misclassifying a sick patient as healthy) is significantly higher than false positives. Thus, relying solely on accuracy is 
insufficient for evaluating cancer detection models. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

4.2. Sensitivity 

Sensitivity, or the true positive rate (TPR), evaluates the model’s ability to correctly identify patients with cancer. It is 
crucial to ensure that the model minimizes false negatives, thus catching as many true cases of cancer as possible. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4.3. Specificity 

Specificity, or the true negative rate (TNR), assesses the model’s ability to correctly identify patients without cancer. 
High specificity indicates the model effectively reduces false positives, avoiding unnecessary anxiety and medical 
procedures for healthy individuals. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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4.4. Balanced Accuracy 

Balanced accuracy is particularly useful for imbalanced datasets, as it considers both sensitivity and specificity, 
providing a more comprehensive view of the model's performance across both classes. It is calculated as the average of 
sensitivity and specificity. 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

4.5. . F1 Score 

The F1 score is the harmonic mean of precision and recall (sensitivity), providing a single metric that balances the trade-
off between the two. It is particularly useful when the class distribution is imbalanced, as it considers both false positives 
and false negatives. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

In these formulas, TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Negative) represent the 
counts of each outcome from the model’s predictions. 

4.6. ROC Curve and AUC 

The Receiver Operating Characteristic (ROC) curve is another important tool for evaluating model performance. It plots 
the true positive rate (sensitivity) against the false positive rate at various threshold settings. The Area Under the ROC 
Curve (AUC) provides a single measure of the overall performance of the model, with values closer to 1 indicating better 
discriminatory ability between positive and negative classes (Fawcett, 2006). 

Using these metrics allows for a thorough and nuanced assessment of the machine learning models applied in this study. 
By focusing on both the ability to correctly identify cancer patients (sensitivity) and the ability to correctly identify 
healthy individuals (specificity), along with balanced accuracy and AUC, we ensure a robust evaluation framework for 
the predictive models. 

5. Results and Discussion 

Our study investigated the effectiveness of various machine learning models Logistic Regression, SVM, Random Forest, 
XGBoost, and Neural Network—in the early detection of cancer using an interpretable machine learning approach 
(LIME). The primary evaluation metrics included Balanced Accuracy, Sensitivity, Specificity, F1 Score, and AUC, as 
summarized in Table 1. 

Table 1 The primary Evaluation Metrics of each Model 

Model Balanced Accuracy Sensitivity Specificity F1 Score AUC 

Logistic Regression 0.843984 0.758621 0.929348 0.811060 0.942935 

SVM 0.872095 0.793103 0.951087 0.847926 0.940686 

Random Forest 0.923351 0.879310 0.967391 0.910714 0.947526 

XGBoost 0.916323 0.870690 0.961957 0.901786 0.949541 

Neural Network 0.855322 0.775862 0.934783 0.825688 0.941576 
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Table 2 Classifications of Model based on Input Features  

Feature  Random Forest 
Importance 

XGBoost 
Importance 

Logistic Regression 
Coefficient 

SVM 
Importance 

Neural Network 
Importance 

Age 0.135437 0.058195 0.853546 0.043333 0.040536 

Gender 0.072328 0.121858 0.943595 0.069000 0.076031 

BMI 0.160486 0.059903 0.833119 0.045333 0.045034 

Smoking 0.055947 0.109248 0.835573 0.040000 0.049250 

Genetic Risk 0.122644 0.225060 0.984722 0.097333 0.074044 

Physical Activity 0.157327 0.049402 0.699602 0.010000 0.004751 

Alcohol Intake 0.151721 0.052023 0.803317 0.059667 0.065705 

Cancer History 0.144110 0.324311 1.395457 0.138000 0.133302 

 

 

Figure 1 Features Importance by Model 
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Figure 2 Receiver Operating Characteristics (ROC) curve by Model 

Among these, the Random Forest and XGBoost models emerged as the top performers. Random Forest achieved a 
Balanced Accuracy of 0.923351 and an AUC of 0.947526, while XGBoost achieved a Balanced Accuracy of 0.916323 and 
an AUC of 0.949541. These results indicate that both models are highly effective in distinguishing between cancer and 
non-cancer cases, with XGBoost slightly outperforming Random Forest in terms of AUC. 

 

Figure 3 LIME Explanation of Logistic Regression 
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Figure 4 LIME Explanation of Support Vector Machine 

 

Figure 5 LIME Explanation of Random Forest 

 

Figure 6 LIME Explanation of XGBoost 
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Figure 7 LIME Explanation of Neural Network  

The implementation of LIME provided invaluable insights into the decision-making processes of each model. This 
interpretability is crucial in medical applications where understanding why a model makes a certain prediction is as 
important as the prediction itself. The LIME explanations consistently highlighted Cancer History as the most significant 
feature across all models, underscoring the importance of this factor in predicting cancer. Gender also emerged as a 
crucial factor, particularly influencing predictions in the Logistic Regression and Random Forest models. Smoking status 
was another critical determinant, significantly affecting the predictions in the Logistic Regression and Neural Network 
models. Age, especially for individuals between 35 to 50 years, was identified as a significant predictor. Additionally, 
BMI, genetic risk, alcohol intake, and physical activity were notable features influencing the models’ predictions, 
although to a lesser extent compared to Cancer History and Gender. 

The feature importance graph demonstrated that Random Forest and XGBoost placed considerable emphasis on Cancer 
History, Age, and Gender, while Logistic Regression showed a more balanced distribution of feature importance across 
all factors. This variation highlights the different mechanisms through which these models operate and make 
predictions. The ROC curves further illustrate the robustness of the Random Forest and XGBoost models, which showed 
superior performance compared to SVM and Logistic Regression. Although the Neural Network model was effective, its 
performance was slightly lower than the tree-based models. 

The analysis indicates that tree-based models, particularly Random Forest and XGBoost, offer the best performance for 
early cancer detection in this dataset. Their high sensitivity and specificity, coupled with balanced accuracy, make them 
suitable for medical applications where both false positives and false negatives carry significant consequences. The 
interpretability provided by LIME enhances the transparency of these models, making them more acceptable in clinical 
settings. Clinicians can understand and trust the model’s decision-making process, ensuring that the predictions are not 
only accurate but also explainable. 

These findings have important implications for clinical practice. The models can help identify high-risk individuals 
based on their medical history and lifestyle factors, enabling early intervention. Understanding the impact of features 
such as genetic risk and lifestyle choices can aid in personalized treatment plans and preventive measures. Insights into 
significant predictors of cancer can also inform public health policies and awareness programs focused on cancer 
prevention. 

6. Conclusion and Future Works 

This study demonstrates the potential of machine learning models, particularly Random Forest and XGBoost, in the 
early detection of cancer. The use of interpretable machine learning approaches like LIME ensures that these models 
are not only accurate but also transparent and trustworthy, paving the way for their integration into clinical practice 
for better health outcomes. The insights gained from this research can help in developing effective strategies for cancer 
detection and prevention, ultimately contributing to improved patient care and public health. 

Increasing the size and diversity of the dataset is essential for improving the model's robustness and generalizability. 
Gathering larger datasets from varied populations and including longitudinal data could offer a more thorough 
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understanding of the diagnostic features of early cancer detection. Furthermore, investigating advanced model 
improvement methods, such as algorithmic enhancements, regularization techniques, and architectural modifications, 
can enhance accuracy and overall performance. 

Data privacy, bias mitigation, and regulatory compliance are ethical implications that need to be addressed for the 
scientific deployment of AI-based diagnostic tools. Future work should also concentrate on the ethical guidelines and 
frameworks for the application of machine learning models in the healthcare industry.  
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