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Abstract 

Evapotranspiration (ET0) is vital for agriculture and environmental management, facing challenges from climate 
change. Optical remote sensing overcomes reliance on weather station data. The modeled ET0 using the FAO Penman-
Monteith method and Partial Least Squares Regression on Sentinel-1A data with 2016-2017 meteorological archives. 
Comparative analyses revealed stability in transportation areas within deciduous forests and wetlands, contrasting 
temporal variations. ET0 was significantly influenced by relative humidity (RH) (70.80% to 89.89%), with temperature 
(T) playing a crucial role. Urban vegetated areas maintained stable T values (29.37°C), while forests exhibited dynamic
T variations (24.24°C to 28.94°C). VH polarization captured diverse climatic influences, resulting in a broader range of
dynamic ET0 values (7.38 to 10.76 mm/day) compared to VV polarization (6.74 to 9.34 mm/day). VH sensor
performance varied; in October 2016 showed moderate accuracy R2 was 0.50 with slight underestimation Bias -0.08,
while exceptional accuracy was seen in December 2017 R2 was 1.00 with positive bias (0.57) and excellent agreement
KGE was 0.92. VV sensors in October 2016 had a firm fit R2 was 0.55, with moderate underestimation Bias -0.87, and in
December 2017 displayed a good fit the R2 was 0.57, with slight overestimation Bias 0.44, and good agreement KGE
0.44. Integrating machine learning and satellite imagery enhances ET0 accuracy for real-time monitoring in adaptive
management, addressing climate change, and showcasing sensor-specific variations. Future research should integrate
multi-source synthetic aperture radar satellite data and machine learning for precise ET0 estimation in adaptive
environmental management.
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1. Introduction

Evapotranspiration (ET0) is crucial for agricultural and environmental management as it quantifies the amount of water 
lost from the soil and vegetation through evaporation and transpiration. However, it presents challenges in the face of 
climate change, spatial variability, and the need for Land Use-specific ET0 estimates in agriculture, forestry, and water 
management. Weather station data can be scarce and inadequate for ET0 calculations. The FAO-56 PM model, 
specifically the Penman-Monteith Method, is a standardized approach for calculating ET0, which relies on 
comprehensive weather data. However, the cost of setting up and maintaining weather stations, even in developed 
countries, presents a significant challenge [1, 2]. The Penman–Monteith Method uses air T, RH, solar radiation (SR), 
wind speed (WS), atmospheric pressure (ea), and soil heat flux (G) to estimate evapotranspiration. Automated weather 
stations are scarce, making it challenging to collect accurate weather data due to uncertainties in the information 
collected [3, 4]. Old and unused weather stations may produce inaccurate data, requiring calibration for quality control 
[5]. Remote sensing (RS), especially from polar-orbiting satellites, provides relatively frequent and spatially contiguous 
measurements for global monitoring of surface biophysical variables affecting ET0, including albedo, vegetation type 
and density. RS-based mapping of ET0 is a cost-effective way to estimate and monitor this flux. Since optical RS is 
hindered in the cloudy region, microwave RS can be inevitable to meet the present demand in ET0 estimation [6]. 
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Sentinel-1A and B are Synthetic Aperture Radars (SARs) operated by the European Space Agency, they have been 
providing detailed images of land use and land cover since 2014 and can aid in assessing ET0 [7]. [8] investigated the 
potential of different polarizations (VH, VV) and the VV/VH ratio, along with incidence angles, in predicting significant 
ET0 dates [9, 10]. In addition, [11] reported that the ascending pass of SAR backscatter of coniferous forest is more 
sensitive to the biophysical property evapotranspiration under some scenarios. [12, 13] used a regression modeling 
technique to predict ET0 in Malaysia. They used T, humidity, and SR as input variables and found that the model was 
effective in managing water resources. Their study highlighted the importance of using ET0 as a predictor variable in 
regression models for estimating crop water requirements. By analyzing the correlation between ET0 and optical 
vegetation indices, researchers have indirectly established a link between Sentinel-1 backscatters and ET0. Studies by 
[14, 15] found significant correlations between ET0 and radar backscatter. However, the study conducted by [14] had 
limitations in terms of the number of acquisitions, and it remains to be explored whether there is a direct correlation 
between Sentinel-1 backscatters and ground-based and remotely sensed ET0 for forested areas over a more extended 
period. In this context, the main objectives of the study were 

• To investigate the spatiotemporal dynamics of Evapotranspiration (ET0) across diverse land cover types, 
focusing on understanding the impact of relative humidity (RH), temperature (T), and Sentinel-1A polarization 
channels (VV and VH sigma naught values). 

• To develop a robust land-use-specific Evapotranspiration (ET0) estimation model by integrating 
meteorological parameters and Sentinel-1A SAR data. 

• To evaluate machine learning and high-res satellite imagery for real-time ET0 monitoring in agriculture, 
addressing climate change and spatial variability  

2. Material and methods 

2.1. Study area and data source 

The research focused on the districts along the East Coast of Tamil Nadu in India, as shown in Figure 1. This region is 
well-known for its vast water bodies, which consist of numerous ponds and lakes. The soil in this particular region is a 
blend of red and black soil types, which creates unique opportunities for agriculture. The area experiences abundant RF 
and has excellent water retention capabilities. The average T in this region of Tamil Nadu is approximately 28.1°C, which 
makes it suitable for a variety of activities. On average, the region experiences around 912 millimeters of RF annually, 
and the RH usually stays at about 82 percent (en.climate-data.org). In order to calculate ET0 for a region, data from the 
archives of the Public Works Department (PWD) for the period of 2016-2017 was collected. This data included monthly 
information on SR, RF, T, RH, and WS. The GEE interface with Java Script was utilized to download monthly mean VV 
and VH polarization data from Sentinel 1A, with a spatial resolution of 20 meters.  

 

Figure 1 Geographic Snapshot: Depicting the region of interest with marked locations for weather data collection. 
Weather Stations: Highlighting specific points representing locations where weather data is recorded - land Use 

Visualization: Illustrating the land use and land cover characteristics within the study area 
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2.2. Statistical Analysis 

We conducted research analysis using several Python libraries to perform comprehensive analyses on both satellite and 
weather data. The primary libraries utilized rasterio, geopandas, pandas, NumPy, matplotlib.pyplot, 
scipy.spatial.cKDTree, and Fiona. Together, these libraries provided a robust set of tools for handling geospatial data, 
conducting spatial analyses, and visualizing results. Rasterio was essential in efficiently reading and processing raster 
data, particularly satellite imagery. It came with advanced features such as masking, which allowed for precise 
information extraction based on spatial constraints. The integration of geopandas has been instrumental in managing 
and manipulating geospatial datasets, achieving seamless compatibility between vector and raster data—the 
scipy.spatial.cKDTree module was handy for conducting spatial queries and identifying nearest-neighbor relationships, 
especially for analyzing spatial patterns and data dependencies. The combination of shapely.geometry module and 
Fiona made it possible to create and manipulate geometric objects, which provided a solid foundation for spatial 
operations and analyses. These tools played a crucial role in defining study areas, extracting relevant features, and 
conducting geospatial computations. The use of NumPy has been instrumental in carrying out array-based operations 
and numerical computations. This has significantly improved the efficiency of various data manipulations and analyses. 
When used in conjunction with matplotlib.pyplot, it has made it easier to create clear and insightful visualizations. As a 
result, it has become simpler to interpret complex patterns and trends within datasets (source: pypi.org). 

 

Figure 2 Methodology flow chart 

To calculate reference ET0 using the FAO Penman-Monteith method, one must consider several meteorological 
parameters, including minimum and maximum T, RH, SR, WS, and RF. ETO represents the potential ETO under standard 
reference conditions, as explained by [16]. Below, each step involved in the calculation process, along with the 
corresponding equations, is explained (Figure 2). 

• Step 1: Calculate Mean T (Tmean) 

Tmean = (Tmin + Tmax) / 2 

Where Tmean represents the average daily air T. 

• Step 2: Calculate Saturation Vapor Pressure (es) and Actual Vapor Pressure (ea) 
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es (Saturation Vapor Pressure) can be calculated using the Clausius-Clapeyron equation or, more accurately, using the 
Arden Buck equation. es is the maximum amount of water vapor that air can hold at a given T. ea is the actual amount 
of water vapor in the air. ea (Actual Vapor Pressure) can be calculated using the following equation: 

ea = (RH/100) × es 

Where RH is expressed in percentage 

• Step 3: Calculate the Slope of the Vapor Pressure Curve (Δ) 

Δ = (4098 × es) / (Tmean + 237.3)^2 

Where Δ represents the rate of change of vapor pressure with T. 

• Step 4: Calculate the Psychrometric Constant (γ) 

γ = (0.00163 × P) / λ 

Where γ is the psychrometric constant, which relates the vapor pressure deficit to the actual T; P is atmospheric 
pressure (kPa); and λ is the latent heat of vaporization (MJ/kg). 

• Step 5: Calculate ETO 

ETO = (0.408 × Δ × (Sr - 0) + γ × 900 / Tmean + 273) × U2 × (es - ea)) / (Δ + γ × (1 + 0.34 × U2)) 

Where ETO: Reference ETO (in millimeters per day); 0.408: A constant used in the equation; Δ: The slope of the vapor 
pressure curve (in kPa/°C); γ: The psychrometric constant (in kPa/°C); 900: A constant; Tmean: Mean daily air T at 2 
meters height (in °C); es: Saturated vapor pressure (in kilopascals); ea: Actual vapor pressure (in kilopascals); U2: WS 
at 2 meters height (in meters per second). 

Partial Least Squares Regression (PLSR) is a statistical method that models the relationship between predictor variables 
and a response variable. In the case of predicting ET0 (reference ETO) based on Sentinel-1A VV and VH sigma naught 
values, the method uses ETO values extracted from an Inverse Distance Weighting (IDW) map of a Land Use Land Cover 
(LULC) lookup table (Ergon, 2014).  

PLSR equation: 

VV: Sentinel-1A VV sigma naught values 

VH: Sentinel-1A VH sigma naught values 

Equations were developed to predict ET0 using various approaches, including monthly mean datasets and overall study 
period mean. These approaches provided a more complete understanding of the correlations between variables and 
gave valuable insights into how different factors affect ET0 over time. The first approach involved calculating monthly 
mean values using equations to consider the temporal variability of ET0.  

ET0 = b0 + b1 * VV * IDW_ ET0 (for VV_Band) 

ET0 = b0 + b2 * VH * IDW_ ET0 (for VH_Band) 

The monthly impact of VV and VH on ETO showed seasonal patterns and interdependencies. The second method, which 
utilized mean values over the entire study period, provided a more comprehensive understanding of the correlation 
between the variables.  

ETO = b0 + b1 * VV * IDW_ ET0 (for VV_Band) 

Where b0: The intercept or constant term; b1: The coefficient for the VV variable; b2: The coefficient for the VH variable; 
The coefficient for the IDW_ ET0 variable 
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A method that integrated both short-term oscillations and long-term trends was used to determine the average effect 
of variables on ET0 during the study period. This approach provided a complete understanding of how VV and VH 
impact ET0. To conduct this analysis, it was essential to use software or programming languages with PLSR capabilities. 
Python was one such language, which had libraries like scikit-learn that could be utilized. To perform the analysis, a 
comprehensive dataset containing historical data of ET0, VV, VH, LULC, and IDW_ ETO was required. Once the dataset 
was available, the PLSR model automatically estimated the coefficients associated with each variable. 

The coefficient of determination (R-squared or R²) is a measure of how well a linear regression model explains the 
variance in the dependent variable (Ozer, 1985). It was calculated as follows: 

R² = 1 - (SSR / SST) 

Where R² is the coefficient of determination, SSR is the sum of the squared residuals, and SST is the total sum of squares. 

The coefficients in a PLSR model are essential as they indicate the strength and direction of the relationships between 
ET0 and the predictor variables. Once the model is trained successfully, these coefficients can be used to predict ET0 for 
new data points. To obtain accurate estimates of ET0, one must input the VV, VH, LULC, and IDW_ ETO values for the 
new data points into the established PLSR equation.  

The Root Mean Square Error (RMSE) is a crucial metric for evaluating the accuracy of ET0 estimates from satellites. In 
the context of evapotranspiration, precise estimations are essential for understanding water consumption in 
agricultural and environmental settings. RMSE provides an average measure of the magnitude of errors between 
observed and predicted ET0 values. It is essential to minimize RMSE to enhance the reliability of satellite-based ET0 
models. This ensures that the estimated values closely align with actual observations, making the models more 
trustworthy [17]. 

RMSE= √(1/n) ∑_(i-1)^n▒〖(y_i 〗-〖 (y_i)) 〗̂^2 

Bias: When analyzing estimates of ET0 from satellite data, it is crucial to consider the bias in the model. Bias is an 
indicator of whether the model consistently overestimates or underestimates the ET0 values. A well-calibrated ET0 
model should aim to minimize the bias to ensure that the average predicted value closely matches the average observed 
value [18]. 

Bias= 1/n ∑_(i-1)^n▒〖(y_i 〗- y ̂_i) 

KGE is a metric that is used to evaluate the correlation, bias, and variability of Satellite ET0 estimates. Accurate 
estimations of evapotranspiration are crucial for efficient water resource management. KGE provides a comprehensive 
assessment of model performance, taking into account not only the correlation between observed and estimated values 
(r), but also the relative variability and bias in the data. A high KGE value indicates a well-performing model, which is 
essential for reliable satellite-based ETO predictions [19]. 

KGE= √(〖(r-1)〗^2+〖(s-1)〗^2+ 〖(b-1)〗^2 ) 

3. Results  

3.1. Temporal Dynamics of Different Weather Parameters Across Diverse Land Cover Types during the Years 
2016 and 2017  

The analysis of Sentinel-1A data for evapotranspiration across different land cover types in 2016 and 2017 has revealed 
some significant temporal dynamics. Built-up (urban) transportation areas have maintained stability with consistently 
low RF at around 1.09. On the other hand, built-up (urban) vegetated areas exhibited fluctuations, with the highest peak 
occurring in February 2016 (2.58) and February 2017 (1.40). Forest categories, notably deciduous-dense/closed and 
evergreen/semi-evergreen-dense/closed, showed varying RF values, indicating seasonal changes. Different types of 
land cover showed varying fluctuations in their characteristics during different months. For instance, in June 2017, Salt-
affected land had a notable RF value of 12.31, whereas Wastelands like Barren Rocky/Stony waste and 
Gullied/Ravenous land displayed fluctuations. RH patterns also varied across different types of land cover and months. 
In January 2016, deciduous forests had an RH value of 80.62, while Evergreen forests showed fluctuations in RH values 
from 74.06 to 77.07. Wastelands, Barren Rocky, and Gullied lands exhibited RH values ranging from 77.18 to 88.55. The 
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RH values in Coastal and Riverine sandy areas ranged from 82.95 to 89.89. Inland Natural wetlands exhibited RH 
fluctuations ranging from 78.48 to 84.73. Solar Radiation analysis revealed distinct patterns across land cover 
categories. Temperature variations were also observed. Wind speed observations indicated stability in urban 
transportation areas. Urban areas with vegetation showed seasonal fluctuations. Mining and industrial regions, dense 
deciduous forests, and littoral/swamp forests displayed varying wind speed patterns. Water bodies experienced 
seasonal fluctuations, and wetlands demonstrated different wind speed characteristics.  

3.2. ET0 Analysis Across Land Cover Categories and Months 

Interesting patterns emerged when analyzing ET0 values across different land cover categories and months. In January 
2016, Built-Up - Mining/Industrial Area - Industrial/Mining Dump had the lowest ET0 value of approximately 8.09, while 
Forest - Deciduous recorded the highest value in February 2016 at about 7.93. Notably, there were no available ETO 
values for Forest - Evergreen/Semi-Evergreen - Dense/Closed. However, Forest - Littoral/Swamp Forest recorded the 
highest ET0 value at approximately 10.84 in November 2016. Wastelands had varying values with Wastelands - Barren 
Rocky/Stony Waste peaking at 10.20 in September 2016. Waterbodies also showed fluctuations, with Waterbodies - 
Lakes/Ponds - Rabi Extent having the highest ET0 value at around 9.21 in November 2016. 

LULC maps were generated using Sentinel-1A satellite data and ET0 values. This integration provided a comprehensive 
understanding of environmental dynamics, enabling precise analysis of water consumption patterns and land surface 
variations. Figure 3a illustrates the consistent trend of lower RF from January to June in 2016 and 2017, with a 
significant increase from July to December due to the North East Monsoon. Figure 3b displays RH variations in the 
coastal region and terrain from August to February. Figure 3c shows the highest SR in the study area from April to 
August. In Figure 3d, the coastal area consistently had high Ts exceeding 24.5 degrees Celsius, while the hill region 
recorded lower Ts from October to January. Figure 3e depicts varying wind patterns across seasons, and Figure 3f 
shows ET0 values in 2016 and 2017, reflecting seasonal variations influenced by RF patterns and seasonal transitions. 

  

Figure 3a: The map distinctly illustrates the annual RF 
pattern from January to June in both years, indicating a 

similar trend with lower RF during these months. 

Figure 3b: From August to February, the coastal region 
experiences higher RH compared to the terrain region. 
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Figure 3c During April to August, the study area receives 
the highest SR, and a consistent pattern is observed based 

on the LULC in both 2016 and 2017. 

Figure 3d The coastal area of the study consistently 
experiences high Ts, exceeding 24.5 degrees Celsius on 

all observation dates. 

  

Figure 3e The wind pattern varies across seasons. During 
January, February, and March, the WS is notably lower. 

Figure 3f In 2016, the ETO values for January, October, 
November, and December showed a consistent pattern. 

Similarly, in 2017, the ETO values for October, November, 
and December exhibited a similar trend. 

3.3. Using a Monthly Mean Equation-Based ETO Map on Sentinel-1A VH Polarization 

The analysis of ET0 values using Sentinel-1A VH polarization data has revealed distinct patterns that offer valuable 
insights into environmental dynamics. Notably, March and May 2017 stood out with significantly high ET0 values, 
indicating intensified processes during these periods. Meanwhile, moderate ET0 values were observed in June, July, and 
August 2016, as well as in January, February, September, November, and December 2017. These suggest a more 
balanced water loss. On the other hand, low ET0 values were recorded in June, September, October, November, and 
December 2016, and April, June, July, August, and October 2017. These align with reduced water loss, which could be 
influenced by factors such as reduced solar radiation. In agricultural lands, ET0 values varied, implying varying water 
requirements. Evergreen forests showed diverse climatic influences, while littoral and swamp forests indicated a 
distinct climatic environment. Gullied wastelands displayed substantial variability in water loss, and water bodies 
exhibited fluctuations highlighting seasonal and environmental impacts. The ET0 values derived from Sentinel-1A VH 
polarization data provided nuanced insights into the intricate interplay between vegetation, water dynamics, and 
atmospheric conditions across different land categories.  

3.4. Using a Monthly Mean Equation-Based ETO Map on Sentinel-1A VV Polarization 

The analysis of ET0 values, derived from the Sentinel-1A VV band and using PLSR monthly mean equations, has revealed 
distinct patterns for various months and years. The high ET0 months in 2016 (February, June, July, August, December) 
and 2017 (January, April, December) have indicated an increase in water loss. Moderate values were identified in 2017 
(February, March, October, and November), while low ET0 occurred in April and September of 2017. During specific 
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months of 2016 and 2017, shallow ETO values were observed, suggesting minimal water loss during those periods 
(Figure 5). The coupled use of the Sentinel-1A VV band and PLSR monthly mean equations has provided a 
comprehensive understanding of ET0 variability, which is crucial for assessing water management strategies and 
understanding the impact of environmental factors on ET0 dynamics across different land classes.  

3.5. Utilizing an Overall Mean Equation-Based ETO Map on Sentinel-1A VH Polarization 

The analysis of ET0 using Sentinel-1A VH band data revealed distinct patterns across different months in 2016 and 2017. 
Moderate ET0 values persisted during specific months in both years, with a shift observed in low ET0 months between 
2016 and 2017. The use of PLSR allowed for the exploration of relationships between Sentinel-1A VH band data and 
ET0, providing comprehensive insights into factors influencing ET0 dynamics. In December 2016, Sentinel-1A VH 
polarization output revealed varying minimum and maximum ET0 values across diverse land classes. Agricultural lands 
dedicated to Aquaculture/Pisciculture exhibited dynamic environmental conditions, while Evergreen/semi-evergreen 
open areas displayed nuanced moisture and temperature dynamics. Littoral/Swamp Forests provided insight into 
unique ecological conditions, and Gullied/Ravine Wastelands showcased environmental heterogeneity. Waterbodies 
displayed varying ET0 values (ranging from 6.81 to 9.30), with potential variations emphasized in specific instances. 
Coastal manmade wetlands showed relatively consistent ETO (8.14), indicating stability. Sentinel-1A outputs provided 
valuable insights into the dynamic nature of ET0 across different land classes, highlighting unique environmental 
conditions influencing these variations. 

3.6. Utilizing an Overall Mean Equation-Based ETO Map on Sentinel-1A VV Polarization 

In the study area, the analysis of ETO identified two distinct categories: High ET0 months and Moderate ET0 months. The 
Moderate ET0 months were extracted from Sentinel-1A VV band data using PLSR. The Overall Mean Equation resulting 
from Moderate ET0 months in 2017 (April, September, October, and November) served as a robust model for predicting 
ET0 values based on Sentinel-1A VV polarization. In agricultural lands dedicated to aquaculture, ETO values showed a 
narrow range, indicating stability in environmental conditions for aquatic cultivation. Evergreen and semi-evergreen 
forests with an open canopy displayed a slightly broader spectrum, indicating variations in transpiration and 
evaporation rates. Gullied or ravine-like wastelands showed notably consistent ET0 values, suggesting a uniform pattern 
of aridity, while salt-affected wastelands exhibited a discernible range, possibly influenced by saline content. Water 
bodies, such as lakes and ponds, revealed diverse ET0 values, indicating varying moisture exchange influenced by depth, 
temperature, and surrounding vegetation. Coastal man-made wetlands exhibited a singular data point, implying a stable 
environment with minimal ET0 fluctuations (Figure 7). The Sentinel-1A data provided nuanced insights into ET0 
dynamics across different land classes, revealing patterns of stability, variability, and environmental influences on 
moisture exchange 

  

Figure 4 Using a monthly mean equation-based ET0 map 
on Sentinel-1A VH polarization 

Figure 5 Using a monthly mean equation-based ET0 map 
on Sentinel-1A VV polarization 
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Figure 6 Utilizing an overall mean equation-based ET0 
map on Sentinel-1A VH polarization 

Figure 7 Utilizing an overall mean equation-based ET0 
map on Sentinel-1A VV polarization 

3.7. Temporal Dynamics and Model Performance: Sentinel 1A Monthly Mean Equation vs Overall Mean 
Equation 

Table 1 Temporal Dynamics and Model Performance: Sentinel 1A Monthly Mean Equation vs Overall Mean Equation 

Months 
VH Polarization VV Polarization 

R-squared RMSE Bias KGE R-squared RMSE Bias KGE 

Jan-16 0.48 0.20 0.20 -0.72 0.50 0.24 0.24 -1.00 

Feb-16 0.37 0.32 0.32 0.23 0.47 0.33 0.33 0.15 

Jun-16 0.51 1.01 1.01 0.18 0.54 1.02 1.02 0.11 

Jul-16 0.48 0.79 0.79 0.33 0.50 0.78 0.78 0.66 

Aug-16 0.47 0.39 0.39 0.13 0.52 0.41 0.41 0.09 

Sep-16 0.49 0.55 0.55 -0.85 0.56 0.49 0.49 -0.91 

Oct-16 0.50 0.08 0.08 -0.77 0.55 0.06 0.06 -0.87 

Nov-16 0.40 0.68 0.68 -0.77 0.47 0.63 0.63 -0.83 

Dec-16 0.39 0.56 0.56 0.47 0.47 0.56 0.56 0.38 

Jan-17 0.42 0.33 0.33 -3.10 0.50 0.36 0.36 0.70 

Feb-17 0.43 0.67 0.67 0.46 0.49 0.66 0.66 0.66 

Mar-17 0.47 1.55 1.55 0.43 0.52 1.52 1.52 0.46 

Apr-17 0.45 2.11 2.11 -1.37 0.48 2.11 2.11 -0.73 

May-17 0.45 0.46 0.46 0.48 0.48 0.47 0.47 0.32 

Jun-17 0.46 1.26 1.26 -0.75 0.51 1.22 1.22 -0.81 

Jul-17 0.46 0.58 0.58 -2.07 0.51 0.57 0.57 -6.71 

Aug-17 0.46 0.72 0.72 -0.87 0.51 0.64 0.64 -0.92 

Sep-17 0.52 0.37 0.37 -0.83 0.54 0.32 0.32 -0.88 

Oct-17 0.52 0.52 0.52 -1.69 0.57 0.49 0.49 -3.73 

Nov-17 0.45 1.86 1.86 -0.81 0.54 1.79 1.79 -0.84 

Dec-17 1.00 0.57 0.57 0.92 0.57 0.56 0.56 0.44 

Source: Authors calculated using Sentinel 1A Monthly Mean Equation vs Overall Mean Equation output 
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3.7.1. VH Sensors 

The analysis of data from Sentinel-1A for ET0 estimation showed varying performance across different months, as 
presented in Table 1. In October 2016, the sensor demonstrated a moderate R2 value of 0.50, which means that 50% of 
the variance in ET0 was explained. Despite a low RMSE of 0.08, a negative bias (-0.08) suggested a slight 
underestimation. The KGE of -0.77 indicated moderate agreement with the observed ETO. Moving to November 2016, 
the R2 value dropped to 0.40, with a higher RMSE of 0.68 and a negative bias (-0.68), indicating more significant errors 
and continued underestimation. The results for December 2016 showed an improvement with an R2 value of 0.39, a 
moderate RMSE of 0.56, and an optimistic bias of 0.47. These values suggested that the estimate was reasonably 
accurate and showed good agreement with a KGE value of 0.47. However, in October 2017, the sensor exhibited a 
relatively high R2 value of 0.52 but a low KGE value of -1.69, which indicates poor agreement despite a low RMSE value. 
On the other hand, December 2017 showed exceptional performance with a perfect fit R2 value of 1.00, low RMSE value 
of 0.57, and optimistic bias of 0.57, indicating accurate ET0 estimation and excellent agreement with a KGE value of 0.92. 
In September 2017, the sensor demonstrated a high R2 value of 0.52, a low RMSE value of 0.37, and a negative bias of -
0.83, which suggests underestimation. The KGE value of -0.83 indicates moderate agreement between the estimate and 
the actual value. 

3.7.2. VV Sensors 

In October 2016, a strong fit was indicated by the R2 value of 0.55, complemented by a low RMSE of 0.06 and a negative 
bias of -0.87, suggesting underestimation. The KGE of -0.87 suggested a moderate level of agreement. However, in 
October 2017, despite a high R2 value of 0.57, the data showed a high degree of underestimation, as evidenced by a 
substantial negative bias of -3.73 and a poor KGE of -3.73, despite a low RMSE of 0.49. Moving to December 2017, the 
R2 value of 0.57 indicated a good fit, with a low RMSE (0.56) and a slightly optimistic bias (0.44), implying a slight degree 
of overestimation. The KGE of 0.44 supported good agreement. On the other hand, in July 2017, an R2 value of 0.51 
suggested a moderate degree of explained variance alongside a moderate RMSE (0.57) and a significant negative bias of 
-6.71, indicating substantial underestimation. The KGE of -6.71 confirmed poor agreement during this period (Table 1). 
In summary, these findings emphasized the variability in Sentinel-1A-derived evapotranspiration results across 
different months, highlighting the need for specific contextual factors to be taken into consideration when interpreting 
the data. 

4. Discussion 

Analyzing different land covers reveals that deciduous forests and wetlands exhibit changes over time. Humidity levels 
(RH) range from 70.80 to 89.89 percent, and T varies in forested regions. Sentinel-1A VH Polarization captures a broader 
range of dynamic ET0 values across land classes than VV Polarization, indicating its ability to capture diverse climatic 
influences. RH and surface roughness analyses provide insights into humidity levels and land surface characteristics. 
The R2 values for monthly mean ET0 predictions vary, highlighting the importance of considering specific dates and 
polarization channels. 

A recent study by [20] proposes a new approach for estimating actual evapotranspiration (ETa) fluxes using data from 
the Sentinel-1A satellite. The approach is beneficial in regions where access to optical Sentinel-2 images is limited during 
high cloud cover periods, such as the monsoon season. The study evaluates monthly mean and overall mean equations 
derived from Sentinel-1A's VH and VV bands for predicting ET0. Both approaches provide valuable insights into the 
nuanced variations in water loss from soil and vegetation. The researchers found that analyzing moderate ET0 months 
in 2017 reveals the significance of the Sentinel-1A VV band in capturing subtle variations during specific periods. The 
derived ETa estimates showed strong performance, especially during non-monsoon periods, highlighting their 
usefulness for effective irrigation management during periods of high cloud cover. Overall, the study shows that a 
Sentinel-1A-based approach can be a valuable tool for estimating ET0 fluxes in regions with limited access to optical 
Sentinel-2 images. 

During December 2016, analyses of VH band data revealed intricate patterns across different land classes. Agricultural 
lands dedicated to aquaculture or pisciculture exhibit subtle fluctuations in ET0 values, suggesting a consistent level of 
moisture exchange conducive to stable conditions for aquatic cultivation. In evergreen and semi-evergreen forests with 
an open canopy, a slightly broader spectrum of ETO values indicates variations in transpiration and evaporation rates 
within forested areas. Gullied or ravine-like wastelands display notably consistent ETO values, suggesting a uniform 
pattern of aridity. Salt-affected wastelands show a discernible range in ETO values, indicating specialized environmental 
conditions influenced by saline content. Water bodies, including lakes and ponds, exhibit diverse ET0 values, hinting at 
varying levels of moisture exchange influenced by factors such as water depth or surrounding vegetation. Coastal man-
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made wetlands display a singular data point, indicating a relatively stable environment for these wetlands with minimal 
fluctuations in ET0. 

A study conducted by [21] utilized machine learning algorithms and Sentinel-2 MSI sensor data to simplify ETrF 
estimation in sugarcane. This enhances the METRIC model predictions. The study found that approaches at 10m and 
20m resolutions, especially with XgbLinear and XgbTree, were more efficient in ETrF estimation compared to 
traditional methods. On the other hand, SVM had the lowest accuracy [22]. Although there are differences in data 
resolution from previous studies, the model performs well in predicting ETO. The established ET0 model provides a 
precise means to predict evapotranspiration in semi-arid regions, facilitating effective management [23]. This is 
particularly useful in situations where weighing-type field lysimeters are not available. 

It is necessary to compare the monthly mean and overall mean equations to predict ET0 accurately. This comparison 
should be based on the Overall PLSR equations that consider the results of Sentinel-1A VH and VV. The evaluation should 
assess the ability of each approach to capture variations in ET0 values across different land classes and its performance 
in reflecting environmental dynamics. In addition, statistical analyses like correlation coefficients and model accuracy 
assessments can provide quantitative measures to support the qualitative observations made in this analysis. 
Ultimately, the preference for the equation may depend on the goals of the study and the environmental conditions 
influencing ET0 in the study area. 

Python libraries such as NumPy, matplotlib.pyplot and pandas are crucial for efficient handling, processing, and 
visualization of data throughout the analysis. This research employs comprehensive data and advanced modeling 
techniques to comprehend the intricate dynamics of ET0 in different land cover categories, providing valuable insights 
for land management and environmental monitoring. The Sentinel-1A single-date equation has been proven effective 
in capturing diverse land cover dynamics, thereby improving environmental monitoring and land planning insights. 

5. Conclusion 

The study employed satellite-derived parameters to unravel the intricate dynamics of environmental changes in 2016 
and 2017. By analyzing climatic variations, land cover types, and seasonal transitions, we identified distinct patterns in 
soil and vegetation water loss. Categorizing ET0 months allowed us to explore temporal variations, emphasizing the 
diverse performances of VH and VV polarization channels. Evaluating Sentinel-1A's equations revealed the importance 
of a date-specific and polarization-specific approach for accurate predictions. Notably, the study uncovered the 
significance of VV band in distinguishing moderate ET0 months in 2017, offering targeted insights. The findings provide 
valuable contributions to environmental monitoring, land use planning, and water resource management, empowering 
decision-makers with informed strategies for sustainable practices. The integration of satellite data, statistical models, 
and environmental parameters establishes a robust framework for future studies, advancing our understanding of 
Earth's ecosystems 
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