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Abstract 

This paper modelled four stock prices traded at the Nairobi stock exchange using Markov Chains. Markov chain is a 
stochastic process that has a Markovian property. The study focused primarily on the application of Markov Chain in 
analysing Nairobi Securities Market daily returns to describe the distribution of the market returns, cross-checking if a 
current market return depends on its preceding market returns and using the analysis to predict the future returns. 
Discrete Markov Chains were fitted to determine the probability of change of states in the returns of stock prices and to 
determine the extent to which the Markov model can be used to forecast returns. The idea of using Markov chains to 
predict the behaviour of market prices is widely used since prospective stock investors are concerned with stock price 
movements which might lead to an optimum investment strategy. The Markovian test carried out in the study on the 
daily returns showed that the returns had a Markov property. The model predicted that the share prices would either 
decrease to a range of minimum and lower average, decrease to a range of lower average and zero, remain unchanged, 
increase to a range of zero and upper average and increase to a range of upper average. The steady-state was found in 
the 21st, 23rd, 12th and 21st trading days for Centum, Equity Bank, East African Breweries Limited (EABL) and Kenya 
Airways respectively. 

Keywords: Hidden Markov Model (HMM); Initial Price Offer (IPO); Markov Chain Model (MCM); Nairobi Securities 
Exchange (NSE); Transition Probability Matrix (TPM). 

1. Introduction

Climate In investment, a time series tracks the movement of the chosen data points such as security’s price over a 
specified time with data points recorded at regular intervals. A time series is a sequence of numerical data points in 
successive order. The two main goals of time series analysis are to summarize the time series data and to make 
predictions of the future values of time series variables. Once the pattern of financial time series data is identified, an 
interpretation of the data can be made. Applications of time series cover all areas in statistics most importantly the 
economic and financial time series. 

Financial time series analysis deals with the analysis of data collected in financial markets. Its main goal is to obtain 
reliable information to make good decisions about the future. Predicting the future behaviour of financial markets is 
difficult, as they are determined by a variety of interdependent factors whose evaluation can hardly be measured and 
quantified. These factors include political disorders, economic crises and natural disasters. It forms the foundation of 
making inferences, a key feature that distinguishes financial time series analysis from other time series analyses. Both 
financial theory and its empirical time series contain an element of uncertainty. As a result of the added uncertainty, 
statistical theory and methods play an important role in financial time series analysis. 
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Stock prices act as one of the major factors which enable one to get a whole idea about the performance of the market 
generally. Stock traders always wish to buy a stock at a low price and sell at a higher price. However, the best time to 
buy or sell a stock is a challenging question. Stock investments can have a huge return or a big loss due to the high 
volatility of stock prices. 

In the early 1920’s, trading shares in Kenya was under the London Stock Market. It was in 1954 that the Nairobi 
Securities Exchange was founded. The Nairobi Stock Exchange is the leading stock market and the fastest-growing 
economy in the East and Central African region with a market capitalization of about Ksh.1.62 trillion. The Nairobi 
Securities Exchange has a six-decade heritage in listing equity and debt securities. It offers a world-class trading facility 
for local and international investors seeking to gain exposure to Kenya’s and Africa’s economic growth. Our study is 
going to be based on data from the Nairobi Securities Exchange market. Interest in investing in equities is fast gaining 
momentum at the Nairobi Securities Exchange. 

The introduction of Initial Public offers in Kenya signed a considerable shift to more risky and yet more profitable 
investment options for local and international investors. Due to the favourable investment climate in Kenya since the 
end of post-election violence in 2008 and the peaceful general election in August 2013, investors' confidence has greatly 
improved both direct foreign investment and active participation in the stock exchange market. Daily stock prices in the 
Kenyan market are greatly influenced by a variety of factors including strong political forces, fuel prices, exchange rate 
of major international currencies, inflation rates, dividend announcements and introduction of new products. 

Investors always keep track of the movement of share prices since this directs them in their decision-making process. 
Due to globalization, investors have expanded their investment capacity making investments in more than one market 
which deals with different goods and services. This has enabled them to enjoy diversification of markets Vasanthi et al., 
(2011). For investors to base their decisions on investments, they must have done a study of the current market price 
movements. The ultimate aim is to earn high profit. Therefore, investors have shown a keen interest in predicting stock 
values. However, forecasting index prices may be hard due to market volatility that needs an accurate forecast model. 
The stock prices fluctuate and rise at high levels. 

According to Zhang et al., (2009b), the stock market is uniquely characterized by characteristics such as non-linearity, 
non-parametric, essentially dynamic and exhibits no correlation. The movement also has a relationship with political 
temperature, commodity price index, bank rate and so on. This makes it hard to predict stock prices with certainty. He 
divided market researchers into three groups; The group convinced that investors do not get profit higher than average 
trading advantages just from owning historical and present information, the second group has some fundamental 
analysis from studying various macro-economic factors and information such as financial conditions thus they could 
find correlation between this information and stock prices and the third group tries to predict the stock prices by finding 
a good model. 

Several approaches have been used to model stock prices. They include neural networks, data mining, moving averages, 
regression analysis, ARIMA models and Markov Chains. Markov Chains, used in this study is a prediction method based 
on the probability forecasting approach which is used to predict immediate probabilities of stock prices under the above 
market mechanisms (Zhang et al., 2009b). Markov model takes advantage of the stochastic nature of the share prices 
and helps researchers determine the probability of movement of the share prices from one state to another. 

1.1. Statement of the problem 

Price volatilities make stock investments risky, leaving investors in a critical position when an uncertain decision is 
made. Investors need market information to decide which stocks to invest in, when to buy, when to sell and when to 
wait. However, due to uncertainties in the stock market trends, investors can only maximize returns by studying the 
history of listed companies, performance and development prospects of such fundamentals and being familiar with a 
variety of technical analyses. The purpose of this study was to analyse the discontinuous jumps in stock prices which 
will be of help to the investors in making investment decisions. To improve investor evaluation confidence in securities 
exchange markets, the share prices were specified as a stochastic process assumed to possess Markov dependency with 
respective state transition probabilities matrices. 

1.2. Empirical literature review 

In the earlier studies, other forecasting methods have been proposed for the analysis of the stock market, for instance, 
Hassan et al., (2005) used the Hidden Markov Model for Securities Market forecasting. He used HMM with four 
observations, close, open, high and low, of airline stock and predicted their future close price using four states they used 
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a day in the past similar to the recent day and used the change in that day’s price and price of the recent day to predict 
a future close price. 

Previous studies have shown that stock markets have a Markov property and hence they can be modelled as random 
walk processes. Markov chains have been widely used in the modelling of many practical systems such as 
telecommunications that is in speech recognition, inventory, queuing and manufacturing systems (Ching et al., 2008). 

Markov chains have been proposed as a reasonably acceptable generator of synthetic wind speed data. Authors have 
used various transition matrix sizes, various time steps, and various orders. Shamshad et al., (2005) used a first-order 
transition matrix for hourly time steps with eight states. He stated that second and third-order autocorrelation 
coefficients are significant, and suggests higher-order transition matrices for future work.  

Doubleday et al., (2011) used the Markov chain in the modelling of the Dow Jones Industrial Average. His research aimed 
to determine the relationship between a diverse portfolio of stocks and the market as a whole. Two models were 
highlighted, where the Dow Jones Industrial Average was considered as being in a state of (1) gain or loss and (2) small, 
moderate, or large gain or loss. Results indicated that the portfolio behaved similarly to the entire Dow Jones Industrial 
Average, both in the simple model and the partitioned model. Conclusions were made that when treated as a Markov 
process, a diverse portfolio of stocks will mirror the movements of the entire market. He recommended that future work 
may include different classifications of states to refine the transition matrices. 

Markov chain model has been used to analyse and make predictions on the three states that exist in stock price change 
which are share prices increase, decrease or remain unchanged. Choji et al., (2013) modelled share price movement in 
two top banks, Guarantee Trust Bank of Nigeria and First Bank of Nigeria, using six years of data obtained from 2005 to 
2010. From the matrices derived using the three states, he was able to predict the probability of moving from a given 
state to another state for a transition. He noticed that the probability of the share price of the two top banks in Nigerian 
stock continued to increase until equilibrium was reached which is after 20 years and then became constant. On the 
other hand, for the sake of investors or future investors to be well informed, the probability of the bank share price 
depreciating was approximately 0.4 which implies that an investor who bought shares during that year had an equal 
chance of the share price appreciating or depreciating by the year 2025. 

Mitra et al., (2011) sought to predict the immediate future price for a company using Markov chains. He found the 
moving averages for the data and then grouped them into four different states of results. Markov Chain calculations 
were then applied to the data to create a 4x4 transitional probability matrix. Using this transition matrix, he solved a 
system of equations and found four steady states which were variables that represented the probability that a stock 
price for a given day would fall into one of the four states. He was able to successfully predict the next few days of stock 
prices using this method. 

Markov chain was applied in modelling and forecasting Safaricom shares in NSE (Otieno et al., 2015). The study was 
conducted through a period covering 2008 to 2012 forming a 784 days trading data panel. A Markov chain model was 
determined based on the probability transition matrix and initial state vector and in the long run, the model predicted 
that the Safaricom share prices would depreciate, maintain value or appreciate with a probability of 0.3, 0.1 and 0.5 
respectively. He noticed that the Markov model was able to predict trends due to its memoryless property and random 
walk capability, in that each state can be reached directly by every other state in the transition matrix, consequently 
giving good results. Otieno suggested that further studies could be conducted on several companies listed in the Nairobi 
Securities Exchange, using higher-order Markov chains to gain better insight into the behaviour of the stock market. 

Agwuegbo et al., (2010) analysed Nigerian stock market price trends by determining probabilities of the market 
transitions between various states. He used the Markov chains method to analyse the behaviour of daily return of the 
stock market prices of all securities listed in the Nigeria Stock Exchange. His study showed that the stock market follows 
a random walk model and that the stock prices are but martingale and that all that the investors can do is to narrow 
differences between fairness and otherwise in a way that high chances of small gains may be exchanged with low 
chances of large gains. 

Svoboda et al., (2012) applied the Markov chain to model the Prague stock exchange using time series of day closing 
prices. Their study compared models with different state sets. They used two states in the first model and eight states 
in the other model. They recommended further research be done by constructing models with different state spaces 
within MCA and the development and implementation of a non-homogeneous Markov chain. 
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A study carried out by Zhang et al., (2009a) on forecasting the stock market trend based on the stochastic analysis 
method, observed that an increase in trading days under stable conditions resulted in the convergence of the state 
probability to a value that is independent of the initial state and more or less stabilized. He obtained the closed state 
transition matrix of the Shanghai Composite using a tree states model which he named up, down and constant. He 
further used the past 24 trading day’s closing prices to calculate a forecast of the subsequent day’s closing price using a 
vector formula. After the calculation, they were able to find out that the closing price state interval after each day 
predicted was consistent with the actual situation. He explains the main difference between the Markov model and other 
statistical methods like regression and time series analysis in that the former does not need to consider mutual laws 
among the factors from the complex predictor, only to consider the characteristics of the evolution of the history 
situation of the event itself and to predict changes of the internal state by calculating the state transition probability. 
The article shows that the Markov model has a broader applicability in stock prediction. 

Ghezzi et al., (2003) proposed a novel dividend valuation model by using a Markov chain. A general treatment is 
provided for the valuation problem in which the dividend growth rate is a discrete variable. To do so, a state of a 
stationary Markov chain is attached to each feasible value of the dividend growth rate. On deriving an existing condition, 
the valuation problem is turned into a system of linear equations, with the unknowns being price–dividend ratios, each 
corresponding to a different state of the Markov chains. This procedure also holds when the above-mentioned 
assumption of independent, identically distributed, random variables is relaxed. This paper showed different ways of 
predicting an uncertain future and enhanced the precise amount of predicted information. 

Simonato, (2011) developed a numerical approach for computing American option prices in the lognormal jump–
diffusion context. That approach uses the known transition density of the process to build discrete time-homogeneous 
Markov chains to approximate the target jump-diffusion process. He examines how a Markov chain approach, which 
uses the known transition density of the stock price to build an approximating Markov chain, can be used to compute 
prices for American options in the jump-diffusion context with log-normal jumps. The proposed approach is shown 
numerically to converge smoothly to benchmark values as the number of states of the Markov chains is increased. He 
recommends that further research examine and compare the recursive integration approach, which also uses the 
transition density of the stock price to compute derivatives prices. 

Hoek et al., (2012) stated that the main contribution of their paper is to value a general finite expiration American option 
in the framework of Markov chain dynamics; the framework of dynamics is driven by a finite state Markov chain. He 
developed a model of a financial market and considered where the uncertainty is using a finite state Markov chain. 

Mettle et al., (2014) specified equity price change of selected equities from Ghana Stock Exchange weekly trading data 
as a stochastic process assumed to possess Markov dependency with respective state transition probabilities matrices 
following the identified state, decrease, stable or increase. He established that identified states communicate and that 
the chains are aperiodic and ergodic thus possessing limiting distributions. He developed a methodology for 
determining expected mean return time for stock price increases and also established criteria for improving investment 
decisions based on the highest transition probabilities, lowest mean return time and highest limiting distributions. 

Zhou, (2014) studied the stock price of China's Sports Industry and the theory of Weighted Markov Chain was applied 
to forecast the stock price. He used the stock price changes in China's Sports Industry in seventy trading weeks from 
February 6, 2012, to June 11, 2013, and used the Weighted Markov Chain model for prediction. The historical data of 
the stock’s closing price was tested about Markov Property. A state transition matrix was constructed using the data 
and the weight values of every state were calculated with the method of Weighted Markov Chain theory and prediction 
intervals of the industry’s future stock prices were obtained. The weighted Markov model was used to predict the stock 
prices. The six states used were plunge, flat plunge, downward flat, upward flat, rise and soar. 

Based on previous literature reviews, researchers have been able to use the definite states Markov model to forecast 
financial time series data. This paper applied the previous methods used but used a recent data set, developed a Markov 
chain model for more than one company and used different states to monitor the transition in a Markov model. In 
addition, the extent to which the Markov model can be used to forecast share price was determined. 
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2. Methodology 

2.1. Stochastic Process 

A stochastic process is a family or set of ordered random variables. It is a collection of random variables 𝑋𝑡, one for each 
time t in some set 𝐽. The order is indicated by indexing each random variable in the family by a subscript. Usually, the 
ordering is a result of the random variables being observed over time. The random variable 𝑋𝑡  denotes the price of a 
stock at the time 𝑡 and observations of the stock price for the last 5 trading days. These data were used to describe the 
process and to analyse the nature of its past behaviour over time. It was also used to estimate the parameters of our 
stochastic process model. Prediction of the future behaviour of the stock price was then done by the estimated stochastic 
process. It is the dependence between the random variables in the set that allowed us to make predictions by 
extrapolating past patterns into the future. The set of values that the random variables 𝑋𝑡 are capable of taking what is 
called the state space of the process. A possible model might say that the value of 𝑋𝑡  depends on the values at the end of 
the two previous trading days 𝑋𝑡−1 and 𝑋𝑡−2. In this study, our stochastic process was in the form of a set of state spaces 
which can be counted hence the state spaces are discrete that is 𝑆 = 1,2,3, … , 𝑛. 

2.2. Markov Chains 

A Markov Chain is a stochastic process that has the Markovian property. A Markovian property is when the present 
state determines the future state but the past state has no significance in future predictions. That is a stochastic process 
𝑋𝑡 is said to have the Markovian property if; 

𝑃(𝑋𝑡+1 = 𝑗|𝑋0 = 𝐾0, 𝑋1 = 𝐾1, … , 𝑋𝑡−1 = 𝐾𝑡−1, 𝑋𝑡 = 𝑖) = 𝑃(𝑋𝑡=1 = 𝑗|𝑋0 = 𝐾0) for 𝑡 = 0,1,2, … , 𝑛 

The conditional probabilities below are called transition probabilities given by;  

𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖) = 𝑃𝑖𝑗 

The current status of the system can fall into any one of a set of 𝑀 + 1 mutually exclusive categories called states. The 
random variable 𝑋𝑡  represents the state of the system at time t, so it’s only possible values are 0 to 𝑀. The system is 
observed at particular points in time, labelled 𝑡 = 0,1,2, … ,𝑚 . Thus, the stochastic process 𝑋𝑡 = (𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑚) 
provides a mathematical representation of how the status of the physical system evolves. Markov Chains provide 
conditional transition probability distributions of state 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑘  and transition probability matrix 𝑝  which 
consist of conditional probabilities 𝑝𝑖𝑗 = 𝑃(𝑋𝑛+1 = 𝑆𝑗|𝑋𝑛 = 𝑆𝑖) for 𝑖, 𝑗 = 1,2,3, … , 𝑘 where 𝑝𝑖𝑗 does not depend on time 

thus called homogeneous Markov chains. The vector of conditional probabilities was 𝑃(𝑋𝑛+1 = 𝑥𝑛+1|𝑋1 = 𝑥1, 𝑋2 =
𝑥2, … , 𝑋𝑛 = 𝑥𝑛). 

The Markov model was built in each of the stock returns. Markov Chain models are useful in studying the evolution of 
systems over repeated trials. Repeated trials are often successive periods where the state of the system in any particular 
period cannot be determined with certainty. Rather, transition probabilities are used to describe how the system makes 
transitions from one period to the next. The TPM is used to determine the probability of the system being in a particular 
state at a given time. 

2.3. Chapman-Kolmogorov Equations 

The Chapman-Kolmogrov equations are used to point out that when one goes from one steady state to another in n 
steps, the process will be in some other state after exactly m states. Chapman-Kolmogorov equations allow us to obtain 
the n-step probabilities from the one-step transition probabilities recursively. 

Given that 𝑝𝑖𝑗 is the 1-step Transition Probability Matrix, 𝑝𝑖𝑗
𝑛  is the n-step Transition Probability Matrix, 𝑝𝑖𝑗

𝑚 is the m-

step Transition Probability Matrix and 𝑝𝑖𝑗
𝑛−𝑚 is the (𝑛 − 𝑚)-step Transition Probability Matrix. 

𝑝𝑖𝑗
𝑛 = ∑ 𝑝𝑖𝑘

𝑚𝑝𝑘𝑗
𝑛−𝑚

𝑚

𝑘=0

 

for all 𝑖 = 0,1, … ,𝑚; 𝑗 = 0,1,2, … ,𝑚;𝑚 = 1,2, … , (𝑛 − 1) and 𝑛 = (𝑚 + 1), (𝑚 + 2),… 
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Thus, the summation is the conditional probability that, given a starting point in one state, the process goes to the other 
state after m-steps and then to the next state in (𝑛 − 𝑚)-steps. Therefore, by summing up these conditional probabilities 
over all the possible steady states must yield, 

𝑝𝑖𝑗
𝑛 = ∑ 𝑝𝑖𝑘𝑝𝑘𝑗

𝑛−1𝑀
𝑘=0  and 𝑝𝑖𝑗

𝑛 = ∑ 𝑝𝑖𝑘
(𝑛−1)

𝑝𝑘𝑗
𝑀
𝑘=0 .  

These expressions allowed the computation of the n-step probabilities from the one-step transition probabilities 
recursively. 

2.4. Steady State Probabilities 

Given that 𝑝 is the steady state in a 1-step transition of states and 𝜋𝑛 the steady state in the n-step transition of states, 
if at any step 𝑛, 𝜋𝑛 = 𝜋, it is then said that the chain has reached the steady state or equilibrium and 𝜋 is called the 
steady-state distribution. After the n-step transition probabilities for a Markov chain have been calculated, the Markov 
chain will display the characteristic of a steady state. Meaning, that if the value of 𝑛 is large enough, every row of the 
matrix will be the same and as such, the probability that the process is in each state does not depend on the initial state 
of the process. Therefore, the probability that the process will be in each state 𝑛 after a certain number of transitions is 
a limiting probability that exists independently of the initial state. This can be defined as follows; 

For any irreducible ergodic Markov chain lim
𝑛→∞

𝑝𝑖𝑗
𝑛  exists and is independent of 𝑖. Furthermore, lim

𝑛→∞
𝑝𝑖𝑗

𝑛 = 𝜋𝑗 ≥ 0, where 

the 𝜋𝑗 uniquely satisfies the following steady-state equations; 𝜋𝑗 = ∑ 𝜋𝑗𝑝𝑖𝑗
𝑀
𝑖=0  and ∑ 𝜋𝑗

𝑀
𝑗=0 = 1, for 𝑗 = 0,1,2, … ,𝑀. 

The steady-state probabilities of the Markov chain are 𝜋𝑗. These values indicate that after a large number of transitions, 

the probability of finding the process in a particular state such as 𝑗 tends to the value of 𝜋𝑗 which is independent of the 

initial state. To solve for the steady state probabilities discussed above, the aforementioned formulas must be applied 
to the transition matrix, and the linear system needs to be solved. Suppose, for a given Markov chain, the one-step 
transition matrix is the following: 

𝑃 =

[
 
 
 
 
𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

… 𝑝1𝑛

… 𝑝2𝑛

… 𝑝3𝑛

⋮ ⋮ ⋮
𝑝𝑛1 𝑝𝑛2 𝑝𝑛3

⋱ ⋮
… 𝑝𝑛𝑛]

 
 
 
 

 

Then the corresponding 𝜋𝑗 = 1 the following linear equation was then solved, 

𝜋0𝑝01 + 𝜋1𝑝02 + 𝜋2𝑝03 + ⋯+ 𝜋𝑛𝑝0𝑛 = 𝜋0 
𝜋0𝑝01 + 𝜋1𝑝02 + 𝜋2𝑝03 + ⋯+ 𝜋𝑛𝑝0𝑛 = 𝜋1

⋮
𝜋0𝑝𝑛1 + 𝜋1𝑝𝑛2 + 𝜋2𝑝𝑛3 + ⋯+ 𝜋𝑛𝑝𝑛𝑛 = 𝜋𝑛

𝜋0 + 𝜋1 + 𝜋2 + ⋯+ 𝜋𝑛 = 0

 

In testing Markovian property, a Markovian property means that the future state is determined by the current state and 
not the past states. This test is carried out to check if the current week’s return depends on the preceding week’s return 
and the hypothesis is as follows, 𝐻0: 𝑝𝑖𝑗 = 𝑝𝑗  (Markov chain is of a zero order) versus 𝐻1: 𝑝𝑖𝑗 ≠ 𝑝𝑗  (Markov chain is of a 

first order). The test statistic is given by, 𝑄 = 2∑ ∑ 𝑛𝑖𝑗 log𝑒 (
𝑛𝑖𝑗

𝑛𝑖𝑛𝑗
)𝑚

𝑗=1
𝑚
𝑖=1 . This follows a chi-square distribution with 

degrees of freedom = (𝑚 − 1)2, where 𝑚 is the number states. The decision rule is to reject 𝐻0 for larger values of 𝑄 
otherwise do not reject. 

3. Results and Discussion 

Returns of data were computed and a Markov test was performed to check whether these returns had a Markov 
property. Descriptive statistics were obtained and frequencies were plotted against returns. The state transition 
diagram was drawn from the TPM. Steady states were generated to determine how much the Markov model can be used 
to forecast stock prices. Table 1 summarises descriptive statistics of the daily returns for Kenya Airways, Equity Bank, 
EABL and Centum investment for the period under review. 
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Table 1 Summary statistics for returns 

Statistics Centum Equity bank EABL Kenya Airways 

No. of observations 1358 1358 1358 1358 

Mean 0.0005 0.0004 0.0000 -0.0015 

Minimum -0.1646 -0.1139 -0.2564 -0.2426 

Median 0.1646 0.0000 0.0000 0.0000 

Variance 0.0005 0.0003 0.0009 0.001 

Std. dev 0.0220 0.0166 0.0295 0.0309 

Skewness 0.0143 -0.1328 0.8747 -0.1625 

Kurtosis 12.9266 6.7913 16.2386 10.5382 

 

The analysis from table 1 showed that the mean of the returns approximately equal to zero and with excess kurtosis in 
the four companies. This shows that the distribution of the daily returns data has heavy tails meaning the daily returns 
has a leptokurtic distribution. 

 

Figure 1 Histogram of returns 

Figure 1 shows the frequencies of the daily returns plotted in a histogram together with a line graph to describe the 
distribution as shown above. This implies that the distribution of the daily returns of the Nairobi Securities market is 
leptokurtic. 
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Figure 2 Plots for the four selected stock prices 

The figure 2 shows the general direction of the prices of shares for the four companies considered for analysis. The 
figure shows that the stock prices of the companies can fluctuate wildly over time due to the frequent change in market 
sentiment, sector or industries in play and profit taking. 

 

Figure 3 Plots of the time series for the four company’s daily returns 
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3.1. Transition Probability Matrix of the Returns 

The three major states were defined as follows; 𝑈 for unchanged, 𝐷 for decrease and 𝐼 for increase. Then 𝐷 and 𝐼 states 
were classified further into two more states; 𝐷1 and 𝐷2 for decrease and 𝐼1and 𝐼2  for increase respectively to give a total 
of five states. These states are; 

𝑀𝑖𝑛 ≤ 𝐷2 ≤ 𝐿𝑜𝑤𝑒𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 , 𝐿𝑜𝑤𝑒𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ≤ 𝐷1 ≤ 0, 𝑈 = 0, 0 ≤ 𝐼1 ≤ 𝑈𝑝𝑝𝑒𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 , and 𝑈𝑝𝑝𝑒𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ≤ 𝐼2 ≤
𝑀𝑎𝑥.  

R statistical software was used to obtain the states above for the four companies. The transition probability matrix of 
the daily returns of the Nairobi stock market index for the entire period for the four companies was obtained 
respectively. 

𝐶𝑒𝑛𝑡𝑢𝑚𝑇𝑃𝑀 =

[
 
 
 
 
0.3333 0.0000 0.1667
0.0039 0.4650 0.1946
0.0000 0.3183 0.2942

0.3333 0.1667
0.3327 0.0039
0.3806 0.0069

0.0019 0.3358 0.1866
0.0833 0.2500 0.2500

0.4646 0.0112
0.3333 0.0833]

 
 
 
 

 

In Centum investments, for instance the probability of being in state 𝐷2, 𝐷1, 𝑈, 𝐼1 and 𝐼2, is 0.3333, 0.4650, 0.2942, 0.4646 
and 0.0833 respectively. This is also the probability of remaining in the same state. 

𝐸𝑞𝑢𝑖𝑡𝑦 𝐵𝑎𝑛𝑘𝑇𝑃𝑀 =

[
 
 
 
 
0.3750 0.3750 0.0000 
0.0044 0.4245 0.3195
0.0000 0.2956 0.3805

0.2500 0.0000
0.2429 0.0088
0.3136 0.0103

0.0021 0.2784 0.1897
0.1000 0.4500 0.1500

0.5072 0.0227
0.2500 0.0500]

 
 
 
 

 

In Equity bank for instance the returns have a probability of 0.3750 of moving from 𝐷2 to 𝐷1 and the same chance of 
remaining to the same state. The returns are not likely to move to state U and 𝐼2  but can move to 𝐼1 with a probability of 
0.25. 

𝐸𝐴𝐵𝐿𝑇𝑃𝑀 =

[
 
 
 
 
0.0000 0.5000 0.0000 
0.0017 0.4957 0.2147
0.0000 0.4089 0.2887

0.0000 0.5000
0.2862 0.0017
0.2955 0.0069

0.0021 0.3662 0.1734
0.0000 0.5000 0.1000

0.4475 0.0107
0.4000 0.0000]

 
 
 
 

 

In EABL for instance, the returns have a probability of 0.0017 of moving from 𝐷1 to 𝐷2and the same chance of moving 
to 𝐼1. The returns will remain in the same state 𝐷1 with a probability of 0.4957, move to 𝑈 with a probability of 0.2147 
and move to 𝐼1  with a probability of 0.2862. 

𝐾𝑒𝑛𝑦𝑎 𝐴𝑖𝑟𝑤𝑎𝑦𝑠𝑇𝑃𝑀 =

[
 
 
 
 
0.3333 0.3333 0.0000 
0.0017 0.4498 0.1903
0.0000 0.4319 0.2990

0.3333 0.0000
0.3581 0.0000
0.2658 0.0033

0.0000 0.4026 0.2141
0.1250 0.0000 0.0000

0.3704 0.0129
0.7500 0.1250]

 
 
 
 

 

For Kenya Airways share price, a case of being in state 𝐼1  was analysed. There is no chance of it going to  𝐷2 . The 
probability of moving from this state to state 𝐷1 is 0.4026. The probability of moving to state 𝑈 is 0.2141, remaining in 
the same state with a probability of 0.3704 and a probability of 0.0129 of moving to state 𝐼2. 

The above share price transition movements can be illustrated clearly by a transition diagram as shown in the figures 
below for Centum, EABL, Equity and Kenya Airways respectively. 
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Figure 4 Centum transition graph 

For centum investment, there is a higher chance of share prices in state 𝐷2 remaining in the same state or moving to 
state 𝐼1 with a probability of 0.33. There is a higher chance of share prices in state 𝐷1remaining in the same state with a 
probability of 0.46. There is a higher chance of share prices in state 𝑈 moving to state 𝐼1 with a probability of 0.38. There 
is a higher chance of share prices in state 𝐼1 moving to state 𝑈 with a probability of 0.46. There is a higher chance of 
state in 𝐼2 moving to state 𝐼1 with a probability of 0.33. 

 

Figure 5 Equity Bank transition graph 

For equity bank, there is a higher chance of share prices in stat 𝐷2 remaining in the same state or moving to state 𝐷1 
with a probability of 0.38. There is a higher chance of share prices in state  𝐷1  remaining in the same state with a 
probability of 0.42. There is a probability of share prices in state 𝑈 remaining in the same state with a probability of 
0.38. In state 𝐼1, there is a higher chance of share prices remaining in the same state with a probability of 0.51. There is 
a chance in state 𝐼2 moving to state 1 with a probability of 0.45 
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Figure 6 EABL transition graph 

For EABL, there is a chance of share prices in state 𝐷2 moving to state 𝐷1 and moving to state 𝐼2 with a probability of 0.5. 
There is a chance of share prices in state 𝐷1 remaining in the same state with a probability of 0.5. There is a probability 
of share prices in state 𝑈 moving to 𝐷1 with a probability of 0.41. In state 𝐼1, there is a chance of share prices remaining 
in the same state with a probability of 0.45. There is a chance in state 𝐼2 moving to state 𝐷11 with a probability of 0.5. 

 

Figure 7 Kenya Airways transition graph 

For Kenya Airways, there is a chance of share prices in state 𝐷2 remaining in the same state or moving to state 𝐷1 or 
moving to state 𝐼2 with a probability of 0.33. There is a chance of share prices in state 𝐷1 remaining in the same state 
with a probability of 0.45. There is a probability of share prices in state 𝑈 moving to 𝐷1 with a probability of 0.43. In 
state 𝐼1, there is a chance of share prices moving to 𝐷1 with a probability of 0.4. There is a chance in state 𝐼2 moving to 
state 𝐼1 with a probability of 0.75. 
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3.2. Testing Markovian Property 

The table 2 below shows the result of the Markov property test performed. From the Markov property test performed, 
we observe for all companies that the maximum likelihood criterion statistic value is greater than the critical value, thus, 
the null hypothesis is rejected. This means that the Markov chain is of a first-order. 

Table 2 Tests for Markov Chain 

Company Centum Equity Bank EABL Kenya airways ꭓ𝟐 Critical Value @5% 

Statistic value 2.9442 3.4349 2.0943 3.3956 1.33 

3.3. Estimate of the Steady State Probabilities 

The absolute probabilities at any stage 𝑛 was determined by the use of n-step transition probabilities. This is a higher 
order transition probability𝑝𝑖𝑗

𝑛  of the transition matrix𝑝𝑖𝑗. The n-step matrix shows the behavior of share prices n-steps 

later. The elements of this matrix represent the probabilities that an object in a given state will be in the next state n-
steps later. These repeated transitions were used to evaluate whether the transition probabilities converge over 
repeated iterations. The higher order transition probability 𝑝𝑖𝑗

𝑛  of the transition probability matrix 𝑝𝑖𝑗 was calculated to 

observe the behavior of the share price and the results obtained using R Statistical Software are as shown below. From 
the above n-step transition matrix, it is noticed that after a period of 21 Trading days for Centum, 23 for equity, 12 for 
EABL and 21 Trading days for Kenya Airways, the matrix begins to approach some constant probabilities. After 
extending matrix multiplication to higher power we see all values converge indicating that equilibrium is attained. The 
fact that the transition matrix converges to a steady state system means that the Markov chain is ergodic. This is clear 
as the five states in the matrix each with five nonzero probabilities. 

𝐶𝑒𝑛𝑡𝑢𝑚 𝑝𝑖𝑗
21 =

[
 
 
 
 
0.0044 0.3788 0.2130 
0.0044 0.3788 0.2130 
0.0044 0.3788 0.2130 

0.3950 0.0088
0.3950 0.0088
0.3950 0.0088

0.0044 0.3788 0.2130 
0.0044 0.3788 0.2130 

0.3950 0.0088
0.3950 0.0088]

 
 
 
 

 

𝐸𝑞𝑢𝑖𝑡𝑦 𝐵𝑎𝑛𝑘 𝑝𝑖𝑗
23 =

[
 
 
 
 
0.0059 0.3354 0.2861 
0.0059 0.3354 0.2861 
0.0059 0.3354 0.2861 

0.3579 0.0147
0.3579 0.0147
0.3579 0.0147

0.0059 0.3354 0.2861 
0.0059 0.3354 0.2861 

0.3579 0.0147
0.3579 0.0147]

 
 
 
 

 

𝐸𝐴𝐵𝐿 𝑝𝑖𝑗
12 =

[
 
 
 
 
0.0015 0.4326 0.2144 
0.0015 0.4326 0.2144 
0.0015 0.4326 0.2144 

0.3441 0.0074
0.3441 0.0074
0.3441 0.0074

0.0015 0.4326 0.2144 
0.0015 0.4326 0.2144 

0.3441 0.0074
0.3441 0.0074]

 
 
 
 

 

𝐾𝑒𝑛𝑦𝑎 𝐴𝑖𝑟𝑤𝑎𝑦𝑠 𝑝𝑖𝑗
21 =

[
 
 
 
 
0.0022 0.4267 0.2210 
0.0022 0.4267 0.2210 
0.0022 0.4267 0.2210 

0.3442 0.0059
0.3442 0.0059
0.3442 0.0059

0.0022 0.4267 0.2210 
0.0022 0.4267 0.2210 

0.3442 0.0059
0.3442 0.0059]

 
 
 
 

 

3.4. Estimate of the Future Expected Daily Returns 

The last research question sought to determine the prediction of one day future state which in this case the 1359th 
trading day. To address this, we apply an initial state vector to the transition matrix and predict what state that initial 
vector will transition to after one trading days. The 1359th trading day for Centum shows that there is a higher chance 
of the returns of the shares being in state 𝐼1 i.e. appreciating up to the upper average. This is as shown below; 
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[0.0044 0.3785 0.2128 0.3954 0.0089] 

[
 
 
 
 
0.0033 0.0000 0.1667
0.0039 0.4650 0.1946
0.0000 0.3183 0.2942

0.3333 0.1667
0.3327 0.0039
0.3806 0.0069

0.0019 0.3358 0.4646
0.0833 0.2500 0.2500

0.1866 0.0112
0.3333 0.0833]

 
 
 
 

 = 

[0.0044 0.3787 0.2130 0.3950 0.0088] 

The 1359th trading day for Equity bank shows that there is a higher chance of the returns of the shares being in state 𝐼1 i.e. 

appreciating up to the upper average. 

[0.0059 0.3366 0.2865 0.3579 0.0147] 

[
 
 
 
 
0.3750 0.3750 0.0000
0.0044 0.4245 0.3195
0.0000 0.2956 0.3805

0.2500 0.0000
0.2429 0.0088
0.3136 0.0103

0.0021 0.2784 0.1897
0.1000 0.4500 0.1500

0.5072 0.0227
0.2500 0.0500]

 
 
 
 

 = 

[0.0059 0.3360 0.2866 0.3583 0.0148] 

The 1359th trading day for EABL shows that there is a higher chance of the returns of the shares being in state  𝐷1  i.e. 

depreciating up to the lower average. 

[0.0013 0.4330 0.2143 0.3439 0.0079] 

[
 
 
 
 
0.0000 0.5000 0.0000
0.0017 0.4957 0.2147
0.0000 0.4089 0.2887

0.5000 0.0000
0.2862 0.0017
0.2955 0.0069

0.0021 0.3662 0.1734
0.0000 0.5000 0.4000

0.4475 0.0107
0.1000 0.0000]

 
 
 
 

 = 

[0.0015 0.4326 0.2145 0.3441 0.0073] 

The 1359th trading day for Kenya Airways shows that there is a higher chance of the returns of the shares being in state 𝐼1 i.e. 

depreciating up to the lower average. 

[0.0022 0.2791 0.2216 0.3439 0.0059] 

[
 
 
 
 
0.0000 0.3333 0.0000
0.0017 0.4498 0.1903
0.0000 0.4319 0.2990

0.3333 0.0000
0.3581 0.0000
0.2658 0.0033

0.0000 0.4026 0.2141
0.1250 0.0000 0.0000

0.3704 0.0129
0.7500 0.1250]

 
 
 
 

 = 

[0.0020 0.3604 0.1930 0.2914 0.0059] 

4. Discussion 

The study focused on the application of Markov chain to the daily returns of the Nairobi Securities Exchange. From the 
study, the analysis showed that the mean of the returns approximately equal to zero and with excess kurtosis in the four 
companies shows that the distribution of the daily returns data have heavy tails. This implies that the distribution of 
the daily returns of the Nairobi Securities market is a leptokurtic distribution. The Markov property tests carried out 
revealed that the returns of the four companies follow a first-order Markov chain which implies that a daily’s return 
depends only on its preceding daily’s return. This test satisfies the assumptions underlying the application of Markov 
Chain. The transition probability matrices obtained represented the probabilities of moving from one state to the other 
for the various companies. The convergence of transition matrix to a steady state implying that there is a limiting 
probability that the return states will be in a steady state condition after 21 days for Centum, 23 days for equity bank, 
12 days for EABL and 21 days for Kenya Airways. The last objective was to determine the Markov model for forecasting 
share price in Nairobi Securities Exchange, it was concluded that the derived the transition matrix could be used to 
predict the states of share price. 

5. Conclusion 

Based on the first objective, it was concluded that based on the daily returns of the four companies are dependent on 
the immediate return only and independent of the past returns. The other objective was to determine the Markov model 
for forecasting the share prices in the Nairobi Securities Exchange, it was concluded that the derived initial state vector 
and the transition matrix could be used to predict the states of the share prices of Centum, EABL, Kenya Airways and 
Equity bank as confirmed by the prediction of the states of 1359th trading days. Additionally, the convergence of the 
transition matrix to a steady state implying ergodicity is a characteristic of the stock market makes the model applicable. 
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Finally, In the long run, irrespective of the current state of share price, the model predicted that the share prices will 
decrease to a range of minimum and lower average, decrease to a range of lower average and zero, remain unchanged, 
increase to a range of zero and upper average and increase to a range of upper average and the maximum value with an 
approximate probability of 0.0044, 0.3788, 0.2130, 0.3950, 0.0088 for Centum, 0.0059, 0.3354, 0.2861, 0.3579, 0.0147 
for equity 0.0015, 0.4326, 0.2144, 0.3441, 0.0074 for EABL and 0.0022, 0.4267, 0.2210, 0.3442, 0.0059 in Kenya Airways 
respectively. 

The study focused on the application of the Markov chain to the daily returns of the Nairobi Securities Exchange. The 
study concluded that the analysis showed that the returns of the four companies follow a first-order Markov chain. The 
transition probability matrices obtained represented the probabilities of moving from one state to the other for the 
various companies. The convergence of the transition matrix to a steady state implies that there is a limiting probability 
that the return states will be in a steady state condition after 21 days for Centum, 23 days for equity bank, 12 days for 
EABL and 21 days for Kenya Airways. It was also concluded that the derived transition matrix could be used to predict 
one day of the share price. This study shows how the Markov model fits the data and can predict trends due to its 
memoryless property and random walk capability, in that each state can be reached directly by every other state in the 
transition matrix, consequently giving good results. Hence, this model will help both researchers and investors in 
identifying the future prices in stock markets in general thereby being able to make informed decisions regarding 
investment in the stock market. 
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