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Abstract 

Blockchain and other Distributed Ledger Technologies (DLTs) have evolved significantly in the last years and their use 
has been suggested for numerous applications due to their ability to provide transparency, redundancy and 
accountability. Public key cryptography and hash functions provide security to blockchains, smart contracts and 
cryptocurrencies. Fast progress in Quantum computing presents significant threats to blockchain systems as it has 
leveraged possibility of attacking cryptosecurity systems in near future forcing re-design of blockchains to withstand 
quantum attacks and vulnerabilities. This article studies different types of vulnerabilities to blockchains, existing 
countermeasures for attacks and investigates causes and preventive mechanisms to make quantum resistant or 
quantum proof blockchains. Thus, this article seeks to provide a broad view on security analysis tools, quantum-based 
cryptosystems, signature schemes and algorithms on Post-Quantum Blockchain (PQB) security to future blockchain 
researchers and developers. 

Keywords: Post Quantum Cryptography; Vulnerabilities of Blockchains; Quantum attacks; Security tools for 
blockchain; Preventive methods of vulnerabilities in blockchain, Post Quantum Signing Algorithms. 

1. Introduction

Blockchain is a technology that was born with the cryptocurrency Bitcoin [1] and that is able to provide secure 
communications, data privacy, resilience and transparency [2]. A blockchain acts as a distributed ledger based on a 
chain of data blocks linked by hashes that allow for sharing information among peers that do not necessarily trust each 
other, thus providing a solution for the double-spending problem [3][5]. Such features have popularized blockchain in 
the last years and it has already been suggested as a key technology for different applications related to smart health 
[6], measuring systems [7], logistics [8], [9], e-voting [10] or smart factories [11], [12]. 

Blockchain users interact securely with the blockchain by leveraging public-key/asymmetric cryptography, which is 
essential for authenticating transactions. Hash functions are also key in a blockchain, since they allow for generating 
digital signatures and for linking the blocks of a blockchain. The problem is that both public-key cryptosystems and 
hash functions are threatened by the evolution of quantum computers. 

In the case of public-key cryptosystems, secure transaction data may be recovered fast by future quantum computing 
attacks. Such attacks impact the most popular public-key algorithms, including RSA (Rivest, Shamir, Adleman) [13], 
ECDSA (Elliptic Curve Digital Signature Algorithm) [14], [15], ECDH (Elliptic Curve Diffe-Hellman) [16] or DSA (Digital 
Signature Algorithm) [17], which can be broken in polynomial-time with Shor's algorithm [18] on a sufficiently 
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powerful quantum computer. Moreover, quantum computers can make use of Grover's algorithm [19] to accelerate 
the generation of hashes, which enables recreating the entire blockchain. Furthermore, Grover's algorithm may be 
adapted to detect hash collisions, which can be used to replace blocks of a blockchain while preserving its integrity. 

This article categorizes the types of block chain vulnerabilities in to three segments as Solidity Programming, 
Blockchain design Vulnerabilities and Quantum Computing vulnerabilities. Furthermore, it summarizes the causes, 
impacts and recommended preventive counter measures for non-quantum attacks and identifies potential area for 
research focus especially in transition to post quantum cryptosystems for block chains.   

2. Vulnerabilities in cryptocurrencies 

Based on previous works [20,21,22,23,24], here we have summarized several causes for cryptocurrency 
vulnerabilities. 

 

Figure 1 Cryptocurrency Vulnerabilities 

2.1. Visibility 

Blockchain records all of its validated historical transactions in world state, which is visible to the whole network. This 
visibility may cause some problems when the smart-contract owner wants to keep it from the public due to privacy 
concerns. Prior studies have shown that inspecting accumulated transactions’ statistic characteristics and leveraging 
analysis graph structures could reveal valuable  

2.2. Opacity 

The opacity of smart contracts poses another concern. Live contracts need rigid inspection and source-code audits 
since they manage millions of USD. However, 77% of running smart contracts are opaque and hold USD 3 billion [28]. 

2.3. Immutability 

Smart contracts cannot be modified once deployed on Ethereum. This immutability perpetuates problematic contracts 
on the chain. Workarounds such as updating contracts or addresses at the user side could solve the problem to a certain 
degree, however, they introduce other security concerns. 

2.4. Automated Execution  

A Control Flow Transfer (CFT) between two instructions A and B means that after A’s execution, B is executed 
immediately. When smart contracts interact with each other, those CFTs are not always under control. In the 
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uncontrolled- function call-permission cases, the self-elevation of a malicious attacker could happen by triggering 
some high-privilege functions [29]. 

2.5. Mining  

The order and sequence of processing the transactions to be processed depends on the miner’s choice. The 
deterministic result of a single transaction’s execution no longer exists when multiple transactions are involved. Their 
execution order may vary based on the miner’s choice. This uncertainty severely affects order-sensitive transactions. 
The final result of a series of transactions might reach vastly different outcomes. 

2.6. EVM  

EVM structure provides a stand-alone, isolated running-time environment (sandbox) for smart contracts. EVM utilizes 
an oracle to handle the incoming real-world inputs. An oracle is a concept that bridges blockchain and the real world 
and acts as APIs on chain, which can be accessed by the smart contracts to receive feeds from the real world [28]. 
Centralized oracles introduce several attack vectors and issues to smart contract such as integrity, accuracy, and 
consistency [30]. However, the decentralized designs of oracle such as Chain link [31] are trying to solve this problem. 

2.7. Immature Programming Language 

Solidity is an evolving programming language and its widely known vulnerability is the re-entrancy problem, which is 
caused by the fallback mechanism in Solidity. Mishandled exceptions could be a severe problem for smart contracts 
too. 

3. Blockchain vulnerabilities classification and related works 

 

Figure 2 Blockchain Vulnerabilities Classification 
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3.1. Programming Language Vulnerabilities  

3.1.1. Denial of Service with Block Gas Limit [32] 

Each block in the Ethereum smart contract has an upper limit on the amount of gas (10,000,000 gas [33]) that can be spent  
for computation. Thus, if the gas spent on any transaction exceeds this block gas limit, then this leads to denial of service 
and the transaction will fail. This is the case with the unknown size of arrays which grow over time. 

Preventive Method 

Rather than modifying these arrays completely at once in a single block, several blocks should be taken. Because taking 
several blocks will break a single transaction into multiple transactions, hence it reduces the gas required for each 
transaction. This will reduce the risk of exceeding the block gas limit, and hence prevent denial of   service. 

3.1.2. Denial of Service with Failed Call [34] 

External calls in a smart contract can fail accidentally (due to programming errors) or intentionally (by an attacker). In 
a situation when an attacker combines several calls in a single transaction and executes in a loop, then this can prevent 
other smart contracts nodes to interact with it.  

Preventive Method  

The contract logic to handle failed calls should be executed in such a way that several calls of Ether transfer must not 
be combined in a single transaction with the assumption that the external calls will always fail to choose ‘pull’ over 
‘push’ for external calls. It should implement contract logic to handle failed calls. 

3.1.3. Randomness Using ‘Block Hash’ [9], [35]  

Sometimes randomness is required in operations and block hash can be used for this purpose. However, it can be 
manipulated like timestamp because the same can be predictable by the miners. The use of ‘block hash’ as a source of 
randomness is shown in Figure 10 solidity code. 

Preventive Method 

 The block hash can be read by any other transaction within the same mined block. If the attacker is also a miner, then it 
can be manipulated and worse can happen. Therefore, the external sources of randomness should be used, for example, 
Oracle, RNG [36], RANDAO, etc. 

3.1.4. Integer Overflow/Underflow [37], [38] 

This kind of situation will occur when the value in a calculation exceeds the lower or upper range of the variable size 
type, so cannot be expressed by that type. This can be the case with smaller data types. If the balance will be at 
upper limit unit value (2256), then it will reset again to zero. An unknown hacker drained off 2000 ether 
(cryptocurrency coin of the Ethereum blockchain) which was worth $2.3 million using this vulnerability from ‘‘Proof 
of Weak Hands Coin’’ (PoWHC), which was a legit Ponzi  scheme smart contract. 

Preventive Method 

 To tackle integer overflow and under- flow issues, arithmetic operations should be implemented very carefully by 
comparing the operators and operands before the operation. It is suggested to use assert(), require()   functions, and 
‘SafeMath.sol’ [38] library for arithmetic functions. 

3.1.5. Re-Entrancy [40], [41], [42] 

 It is also known as a recursive call attack. In re-entrance vulnerability, a mali cious contract calls back into the calling 
contract before the first invocation of the function is finished. Therefore, due to this recursive nature of the call, the 
malicious user can do multiple repetitive withdrawals without affecting his balance. An attacker stole 60 million US 
dollars by utilizing this vulnerability in the Decentralized Autonomous Organizations (DAO). 

Preventive Method 

 For protecting against re-entrancy  attacks, a reliable method can be used such as the ‘‘Check- Effect-Interaction 
pattern’’. This defines the order in which we should structure our functions to assure all internal state changes before 
the next call. After resolving all state changes, the function should be allowed to interact with other con- tracts. To 
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prevent cross-function re-entrance attacks, mutex locks are suggested to use. Any contract’s state can be locked using a 
mutex lock and can only be modified by the owner of the lock. It prevents the recursive call of ‘withdraw function’ by an 
attacker. Open Zeppelin has its mutex implementation called as Re-entrance guard which acts as a re-entrancy lock.  

3.1.6. Mishandled Exception [43] 

When a contract is called by another contract and an exception or error is raised in the Calle contract. But if the same 
might not be reported to the Calle contract, then it might lead to threats. Therefore, it can attract the attackers to execute 
the malicious code in the contract. 

 Preventive Method 

An exception in the callee may or may not be propagated to the caller depending on how the function was called. Exception 
handling operators should be used to avoid such types of situations. The return value of functions  must always be 
checked and an exception should be thrown. 

3.1.7. Blockchain Design Vulnerabilities 

Timestamp Dependency [9] 

 It is classified as a security vulnerability by Maher and Alharby [44]. It leads to    a vulnerable situation when the triggered 
condition to execute the transaction is the block timestamp, because the dishonest miners can utilize the block timestamp 
value in an unethical         way. 

Preventive Method 

Luu et al. [8] suggested to use block number instead of block timestamp. Because the block number cannot be altered by 
the malicious miner. Therefore, it is suggested not to assign a block timestamp to a variable in the smart contract code. 

3.1.8. Lack of Transactional Privacy [44], [46] 

Transactions balance details of the users are publicly available. But users want that their financial details and 
transactions should not be visible to others. It may limit the users of smart contracts since attackers can monitor the 
transaction- related details of users. Attackers can use this information for various kinds of unethical uses. 

Preventive Method 

Watanabe et al. [21] suggested the encryption of the smart contracts before deploying them on the blockchain. Kosba et 
al. [46] developed a tool to create a privacy-preserving contract. They included the important features of privacy protection 
not only in Ethereum blockchain- based smart contract applications but also for all types of blockchains. As a preventive 
method to this issue, they implemented a decentralized smart contract framework, Hawk, which does not store financial 
transactions in the blockchain and spares the developers from implementing any crypto-graphic function. 

3.1.9. Transaction Ordering Dependency [47]  

This vulnerability is related to the execution order of two dependent transactions that are invoking the same smart 
contract. A malevolent user can utilize this vulnerability to attack if the transactions are not executed in the proper order. 
The order of transaction execution is decided by the miners, but if the adversary is the miner itself, then this will be a very 
disastrous situation. 

Preventive Method  

Natoli et al. [48] used Ethereum- based functions (e.g., SendIfReceived) to enforce the order of transactions. Luu et al. [10] 
recommended a guard condition such that ‘‘a contract code either returns the expected output or fails’’. To defend against 
Transaction Ordering Dependency attacks, Shuai Wang et al. [49] suggested a pre-commit scheme 

3.1.10. Untrustworthy Data Feeds [50] 

 Some smart contracts need data feeds from outside the blockchain, but there is no guarantee that the external data 
source is trustworthy. So, in the case when an attacker is intentionally sending wrong information to fail the smart 
contract operation then it will be a hazardous situation. 
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Preventive Method  

Zhang et al. [50] developed a tool named Town Crier (TC). TC works as a trustworthy more mediate in between the 
external source and a smart contract. In other words, it acts as an authenticator and provides data feed privacy using 
encryption. Town Crier tool comprises a Town Crier smart contract that dwells on the blockchain, and a Town Crier 
worker which lives exterior the blockchain. The data feed request can be sent to the Town Crier contract by the client 
contract, which finally will send to the Town Crier worker. The Town Crier worker at that point speaks to outside 
information sources using HTTPS to get the information. After getting the necessary information, the worker will 
advance those feed requests to the Town Crier contract, which finally will send to the client contract. 

3.2. Quantum Computing Vulnerabilities 

Quantum computing presents significant threats to blockchain systems, primarily due to its ability to break traditional 

cryptographic algorithms that are foundational to blockchain security. Here are the main vulnerabilities that quantum 

computers could cause in blockchains: 

3.2.1.  Breaking Public-Key Cryptography (ECDSA, RSA, and ECC) 

Blockchains like Bitcoin and Ethereum rely on Elliptic Curve Digital Signature Algorithm (ECDSA) for digital signatures, 

which are used to verify ownership of funds and authenticate transactions. Quantum computers, using Shor’s algorithm, 

can efficiently break ECDSA, RSA, and ECC (Elliptic Curve Cryptography). 

Impact 

• Transaction Forgery: Quantum computers could derive private keys from public keys, allowing an attacker to 

forge digital signatures. They could then impersonate users, steal funds, or submit unauthorized transactions. 

• Loss of Privacy: Attackers could also break the privacy of blockchain users by revealing their private keys, 

undermining anonymity. 

Cause   

Shor's algorithm can solve the discrete logarithm problem (which underpins ECC) in polynomial time. A sufficiently 

large quantum computer can therefore reverse-engineer private keys from public keys, which in classical computing 

would take an impractically long time. 

3.2.2. Breaking Asymmetric Key Exchange 

Asymmetric encryption methods used for secure communication between blockchain nodes (e.g., RSA, DH, and ECDH 
key exchanges) are also vulnerable to quantum attacks via Shor’s algorithm. 

Impact 

• Compromised Network Communication: Quantum computers could decrypt peer-to-peer encrypted 

communication, exposing sensitive data (such as private transaction details, smart contract interactions, and 

validator communication) between blockchain nodes. 

• Attacking Consensus Mechanisms: Certain consensus algorithms (e.g., in Proof-of-Stake or Proof-of-

Authority systems) may rely on secure communication channels for leader election or validator verification. 

Breaking this could enable attackers to disrupt consensus, censor blocks, or manipulate governance systems. 

Cause 

Shor's algorithm can also factor large integers and solve the discrete logarithm problem used in Diffie-Hellman key 

exchange, exposing session keys that encrypt communications. 

3.2.3. Vulnerability of Hash Functions (Grover's Algorithm) 

Blockchains use hash functions (e.g., SHA-256 in Bitcoin) for mining, creating cryptographic links between blocks, and 

generating addresses. While hash functions are relatively secure, Grover’s algorithm can reduce the security of hash 

functions by quadratically speeding up brute-force attacks. 
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Impact 

• Double-Spending Attacks: With faster hash collision attacks, quantum computers could create collisions more 

efficiently, enabling double-spending or block forging, especially in systems with lower difficulty thresholds or 

small block intervals. 

• Undermining Proof-of-Work: In proof-of-work (PoW) blockchains, quantum computers could gain a 

significant advantage in mining by solving hash puzzles faster than classical miners. This would allow quantum 

miners to dominate mining rewards or perform 51% attacks more easily. 

Cause 

Grover's algorithm reduces the time to find a pre-image (i.e., brute-forcing a hash) from O(2n) to O(2(n/2)), effectively 
halving the security of hash-based systems. 

3.2.4. Vulnerabilities in Digital Signatures (Bitcoin and Ethereum) 

When users reuse addresses or expose their public keys (which happens after any transaction), quantum computers 

could use those public keys to derive the corresponding private keys, leading to significant security risks. 

Impact 

• Retroactive Attacks: An attacker could exploit historical transactions where public keys have already been 

exposed (e.g., Bitcoin UTXO model). Once a quantum computer is capable, attackers could retroactively derive 

private keys and steal funds from wallets or accounts. 

• Account Takeovers: In Ethereum, public keys are often visible in smart contract interactions. This would make 

Ethereum accounts especially vulnerable to quantum attacks. 

Cause 

The mathematical problems that ensure the security of ECDSA and RSA (i.e., the discrete logarithm problem and integer 

factorization) can be easily solved by quantum computers using Shor’s algorithm. 

3.2.5. Vulnerability in Multisig and Threshold Schemes 

Multisignature (multisig) wallets and threshold signature schemes are often used in decentralized finance (DeFi), 
custodial systems, or as governance mechanisms. These schemes rely on cryptographic security for group verification 
and asset control. 

Impact 

• Compromise of Multisig Wallets: A quantum computer could derive the private keys of individual signers in 

a multisig wallet, allowing an attacker to approve transactions and access funds without permission from other 

signers. 

• Governance Takeover: In decentralized autonomous organizations (DAOs) or blockchains using threshold 

signature schemes for governance or voting, quantum computers could tamper with voting processes by 

forging signatures. 

Cause 

 The same weaknesses in public-key cryptography apply to the individual private keys involved in multisig wallets or 

threshold schemes. 

3.2.6. Vulnerability in Proof-of-Stake (PoS) Systems 

Proof-of-Stake systems rely on validators staking funds and signing blocks using cryptographic keys. If quantum 

computers can break these cryptographic keys, the entire staking mechanism could be compromised. 
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Impact 

• Validator Takeover: Attackers could hijack validator keys, allowing them to forge blocks or double-sign, 

potentially leading to slashing penalties or loss of funds. 

• Consensus Manipulation: If a quantum attacker can control a sufficient number of validators by 

compromising their private keys, they could disrupt the consensus process, perform censorship, or execute 

long-range attacks (by rewriting long parts of the blockchain history). 

Cause 

The reliance on ECDSA signatures for validator identification and block signing is quantum-vulnerable. If an 

attacker can derive private keys, they could control validator roles in PoS blockchains. 

3.2.7. Sybil and Eclipse Attacks Enhanced by Quantum Computing 

Quantum-enhanced attacks on cryptographic keys could make it easier for an attacker to control multiple identities or 

nodes in the network, exacerbating Sybil or eclipse attacks. 

Impact 

• Network Partitioning: In an eclipse attack, an attacker can isolate a node and control all communication to 

and from it. With quantum computing, forging cryptographic keys could allow an attacker to take over nodes 

or masquerade as many legitimate nodes in a Sybil attack. 

• Decentralization Threats: In a PoS system or DPoS system, a quantum-powered Sybil attack could allow an 

attacker to artificially inflate their stake or control a disproportionate number of delegate nodes. 

Cause 

 By breaking cryptographic keys, attackers can create multiple forged identities or take over existing ones to launch 

these attacks. 

4. Security Analysis Tools 

4.1. Oyente 

Oyente is one of the first tools created for analyzing Ethereum smart contracts, specifically written in Solidity. It 
performs symbolic execution of the bytecode and identifies common security issues. Oyente emulates the Ethereum 
Virtual Machine (EVM) and symbolically executes smart contracts to detect potential vulnerabilities. The symbolic 
execution checks all possible paths a program could take, helping to uncover problems like: 

- Transaction order dependency 
- Reentrancy attacks 
- Time dependency 
- Integer overflows and underflows 
- Mishandled exceptions 

4.2. Securify 

Securify is another popular tool for smart contract analysis with a different approach. It focuses on automatically 
verifying whether smart contracts comply with a predefined set of security guidelines. 

Securify relies on pattern matching to check contracts against security rules. It breaks the contract down into control 
flows and analyzes the code structure based on both compliance and violation patterns. Unlike Oyente, which uses 
symbolic execution, Securify uses static  analysis methods. It checks for Access control violations, Incorrect use of 
block information (such as block. Timestamp), Integer overflow/underflow.  
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4.3. SmartCheck 

This tool is a static analysis tool that uses ANTLR [52] (a parser generator) to translate Solidity source code into an 
XML parse tree [53] (an XML-based intermediate representation), and checks it against XPath [54] patterns [55]. 

4.4. Defect Checker 

 The defect Checker tool takes bytecodes as input, disassembles them into opcodes, splits the opcodes into several basic 
blocks and symbolically executes instructions in each block [56]. Then it generates the control flow graph (CFG) and 
records all stack events. Using CFG and stack events information, it detects three pre-defined features: money call, loop 
block and payable function. After feature detection, it applies rules to detect eight vulnerabilities: transaction state 
dependency, DoS under external influence, strict balance equality, re-entrancy, nested call, greedy contract, unchecked 
external calls, and block info dependency. 

4.5. Contract Ward 

The Contract Ward applies supervised learning to find vulnerabilities [56].It extracts 1619 dimensional bigram features 
from opcodes using an n-gram algorithm [57] and forms a feature space. Then it labels contracts in training set with six 
types of vulnerabilities using Oyente [58]. The label is stored in a six-dimension vector (e.g., [1 0 1 0 1 1]) where each 
bit stands for an existing vulnerability. Based on the feature space and labels of the training set, Contract Ward uses five 
classification algorithms to detect vulnerabilities. 

4.6. NP Checker  

This tool analyzes the non-determinism in the smart-contract execution context and then performs systematic 

modelling to expose various non-deterministic factors in the contract execution context [59]. Non-deterministic factors 

are factors that could impact final results to the end-user and make them unforeseeable. Possible factors discussed in 

NPChecker are block and transaction state, transaction execution scheduling, and external callee. The NPChecker 

disassembles the EVM bytecode and translates them into LLVM intermediate representation (IR) code [64], recovers 

the control flow structures and enhances the LLVM IR with function information, identifies state and global variables, 

and performs information-flow tracking to analyze their influences on the fund’s transfer. 

4.7. MadMax 

The MadMax tool uses the Vandal decompiler [64] to produce CFG, a three-address code for all operations in the smart 
contract, and function boundaries. Then it analyzes the three-address-code representation, recognizes concepts such 
as loops and induction variables, analyzes memory and dynamic data structures, and infers the concept of gas-focused 
vulnerabilities. This tool only detects gas-focused vulnerabilities, such as unbounded mass operations (infinite or 
nearly infinite loops), external calls that throw out-of-gas exceptions or arithmetic integer overflows, because those 
vulnerabilities will cause unexpected gas consumption. 

4.8. Osiris 

The Osiris combines symbolic analysis and taint analysis technology to find integer bugs in smart contracts [56]. It has 

three components: symbolic analysis, taint analysis and integer error detection. The symbolic analysis component 

creates CFG and symbolical executions of every path in the CFG. Then, the taint analysis part checks for taints across the 

stack, memory and storage, and integer error detection looking for possible integer bugs within the executed 

instruction. 

4.9. Contract Fuzzer 

 The contractFuzzer tool combines static analysis of ABI and bytecodes and fuzzing technology to explore vulnerabilities 
of smart contracts [64]. It creates an Ethereum test net using offline EVM to monitor the execution of the smart contracts 
and extract information from the execution process. By analyzing the ABIs and bytecodes, contractFuzzer calculates the 
function selector (first four bytes of the hash of the function’s signature) and maps each ABI function to a set of function 
selectors used. Then an input generation algorithm is created to fuzz each function based on the information of the 
previous step. It collects three types of test oracles during the execution of smart contracts: attributes of a contract call 
or delegate call, run-time information about opcodes invoked, and the state of the contract. 
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4.10. Sereum 

It is a modified Ethereum client based on Geth that focuses on re-entrancy vulnerabilities cross-function re-entrancy, 
delegated re-entrancy, and create-based re-entrancy. The cross-function re-entrancy is to re-enter another function in 
the same contract.    The delegated re-entrancy is to re-enter a smart contract via delegate call to an unsafe library that 
may use address.call().value() to call back to the original contract. The create-based re-entrancy utilizes the fact that a 
newly created contract will have its constructor function executed immediately when the contract is deployed. The 
constructor is deemed safe and trusted, but it could contain external calls to malicious contracts. If the victim contract 
creates another contract in function A and calls the attacker’s contract in the newly created contract’s constructor, the 
attacker’s contract could re-enter the victim contract by calling function A. Sereum adds two components to the Geth 
client: taint engine (taints and tracks state variables along with the executions of various functions that detects 
conditional JUMP instructions influenced by a storage variable), and attack detector (creates locks that prohibit further 
updates for state variables that influence control flows).  

4.11. sFuzz  

The sFuzz tool is an adaptive fuzzer that combines the strategy in the AFL fuzzer [64] and other adaptive strategies 
built on Aleth with implementations of three more components: runner, libfuzzer, and liboracles. The runner sets up 
the test net environment and options of the other two components. Then the contracts are executed on the test net, 
where transactions are generated based on the analysis of the contract’s ABI.  

- The libfuzzer selectively generates test cases by implementing a feedback-guided adaptive fuzzing strategy. 
- The liboracles monitors the execution of a test case and the corresponding stack events to check for 

vulnerabilities. 

Table 1 Compatibility Matrix for Vulnerabilities and Security Analysis Tools 

 

5. Public Key Post Quantum Cryptosystems 

Public Key Post Quantum Cryptosystems can be broadly categorized into 5 major types namely  

- Code-based cryptosystems,  
- Multi-Variate based cryptosystems,  
- Lattice based cryptosystems, 
- Super Singular Elliptic based Isogeny and  
- Hybrid cryptosystems. 
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As a summary, the five different types of post-quantum cryptosystems are depicted in figure together with examples of 
encryption and digital signature scheme implementations.          

There are four main types of post-quantum cryptosystems and a fifth kind that actually mixes both pre-quantum and 
post-quantum cryptosystems. The following subsections analyze the potential application of such schemes for the 
implementation of encryption/decryption mechanisms and for signing blockchain transactions. 

 

Figure 3 Blockchain Post Quantum Public – Key Cryptosystems 

5.1.1. Code-Based Cryptosystems 

They are essentially based on the theory that supports error- correction codes. For instance, McEliece’s cryptosystem 
is an example of code-based cryptosystem [63] those dates back from the 70s and whose security is based on the 
syndrome decoding problem. McEliece’s scheme provides fast encryption and relatively fast decryption, which is an 
advantage for performing rapid blockchain transactions. However, McEliece’s cryptosystem requires to store and 
perform operations with large matrices that act as public and private keys. Such matrices usually occupy between 100 
kilobytes and several megabytes, which may be a restriction when resource- constrained devices are involved. To tackle 
this issue, future researchers will have to study matrix compression techniques, as well as the use of different codes 
(e.g., Low- Density Parity-Check (LDPC) codes, Quasi-Cyclic Low- Rank Parity-Check (QC-LRPC) codes) and specific 
coding techniques [63]. 

5.1.2. Multi-Variate Based Cryptosystems 

Multivariate-based schemes rely on the complexity of solving systems of multivariate equations, which have been 
demonstrated to be NP-hard or NP-complete. Despite their resistance to quantum attacks, it is necessary further 
research for improving their decryption speed (due to the involved ‘‘guess work’’) and to reduce their large key size and 
cipher- text overhead [64]. 
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Currently, some of the most promising multivariate-based schemes are the ones based on the use of square matrices 
with random quadratic polynomials, the cryptosystems derived from Matsumoto-Imai’s algorithm and the schemes that 
rely on Hidden Field Equations (HFE) [65] – [67]. 

5.1.3. Lattice - Based Cryptosystems 

This kind of cryptographic schemes are based on lattices, which are sets of points in n-dimensional spaces with a 
periodic structure. Lattice-based security schemes rely on the presumed hardness of lattice problems like the Shortest 
Vector Problem (SVP), which is an NP-hard problem whose objective is to find the shortest non-zero vector within a 
lattice. There are other similar lattice-related problems like the Closest Vector Problem (CVP) or the Shortest 
Independent Vectors Problem (SIVP) [68], which nowadays cannot be solved efficiently through quantum computers. 

Lattice-based schemes provide implementations that allow for speeding up blockchain user transactions since they are 
often computationally simple, so they can be executed fast and in an efficient way. However, like it occurs with other 
post-quantum schemes, lattice-based implementations need to store and make use of large keys, and involve large 
ciphertext overheads. For example, lattice-based schemes like NTRU or New Hope often require to manage keys in the order 
of a few thousand bits. 

As of writing, the most promising lattice-based cryptosystems are based on polynomial algebra [70], [71] and on the 
Learning With Errors (LWE) problem and its variants (e.g., LP-LWE (Lindner-Peikert LWE) or Ring-LWE [72]). 

5.1.4. Super-Singular Elliptic Curve Isogeny Cryptosystems 

These schemes are based on the isogeny protocol for ordinary elliptic curves presented in [72], but enhanced to with- 
stand the quantum attack detailed in [73]. There are different promising post-quantum cryptosystems of this type, 
whose key size is usually in the order of a few thousand bits . 

Only one isogeny-based public-key encryption scheme passed to the second round of the NIST call: SIKE. SIKE is 
based on pseudo-random walks in supersingular isogeny graphs. A good reference of SIKE key sizes is SIKEp434, which, 
for a 128-bit level of classical security, makes use of a 2640-bit public-key and a 2992-bit private key. 

5.1.5. Hybrid Cryptosystems 

Hybrid schemes seem to be next step towards post-quantum security, since they merge pre-quantum and post-quantum 
cryptosystems with the objective of protecting the exchanged data both from quantum attacks and from attacks against 
the used post-quantum schemes, whose security is currently being evaluated by industry and academia. 

This kind of cryptosystems have been tested by Google [76], which merged New Hope with an ECC-based Diffie-
Hellman key agreement scheme named X25519. A second version of the hybrid scheme (CECPQ2) is currently being 
tested: it merges X25519 with instantiations of NTRU (HRSS (Hülsing, Rijneveld, Schanck, Schwabe) and SXY (Saito, 
Xagawa, Yamakawa)). 

Although these schemes look promising, it must be noted that they involve implementing two complex cryptosystems, 
which require significant computational resources and more energy consumption. Therefore, future developers of 
hybrid post-quantum cryptosystems for blockchains will have to look for a trade-off between security, computational 
complexity and resource consumption. In addition, developers will have to address the large payload problem that 
arises with this kind of cryptosystems when providing Transport Layer Security (TLS) communications (such a problem 
is due to the required public-key and ciphertext sizes). 

6. Post-Quantum Signing Algorithms  

6.1.1. Code-Based Signing Algorithms 

Different post-quantum code-based signing algorithms have been proposed in the past. Some of the most relevant 
subtypes of this kind of cryptosystems are based on the schemes from Niederreiter [77] and CFS (Courtois, Finiasz, 
Sendrier) , which are really similar to McEliece’s cryptosystem. The signatures of such schemes are short in length and 
can be verified really fast, but, as it occurs with traditional McEliece’s cryptosystems, the use of large key sizes requires 
significant computational resources and, as a consequence, signature generation may become inefficient. 
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Other code-based signing algorithms have been proposed in the literature, such as identification protocols related to 
the application of Fiat-Shamir transformation [78], which in some cases outperform cryptosystems like CFS . 
Nonetheless, it must be noted that, Fiat-Shamir signatures are not known to be completely secure against quantum, so 
alternatives like the Unruh transformation should be considered. 

6.1.2. Multi-Variate Code-Based Signing Algorithms 

In this kind of signature schemes the public key is generated through a trapdoor function that acts as private key. This 
fact usually derives into large public keys, but very small signatures. 

Some of the most popular multivariate-based schemes rely on Matsumoto-Imai’s algorithm, on Isomorphism of 
Polynomials (IP) [79] or on variants of HFE, which are able to generate signatures with a size comparable to the 
currently used RSA or ECC-based signatures [80]. Other relevant multivariate-based digital signature schemes have 
been proposed, like the ones based on pseudo-random multi- variate quadratic equations or on Rainbow-like signing 
schemes (e.g., TTS, TRMS or Rainbow). Nonetheless, such cryptosystems need to be further improved in terms of key size, 
since they usually require several tens of thousands of bytes per key. 

6.1.3. Lattice-Based Signing Algorithms 

Among the different lattice-based signature schemes described in the literature, the ones based on Short Integer 
Solution (SIS)  seem to be promising due to their reduced key size. According to some performance analyses, BLISS-B 
(Bimodal Lattice Signatures B), which relies on the hardness of the SIS problem, provides one of the best performances 
for lattice-based signing cryptosystems, being on a par with RSA and ECDSA . However, note that the original BLISS  was 
attacked in 2016 under specific conditions through a side-channel attack, while its variant BLISS-B is also susceptible 
to cache attacks that are able to recover the secret signing key after 6,000 signature generations. 

Besides BLISS, there are in the literature other lattice- based signature schemes that rely on the SIS problem but 
that were devised specifically for blockchains [81]. Researchers have also developed lattice-based blind sig- nature 
schemes, which were introduced by David Chaum in the early 80s for creating an untraceable payment system [82]. For 
instance, a lattice-based blind signature scheme is detailed in, which was specifically conceived for providing user 
anonymity and untraceability in distributed blockchain-based applications for IoT. 

Finally, it is worth mentioning the lattice-based signature schemes presented in. Specifically, in the authors propose a 
cryptosystem whose public and private keys are generated through Bonsai Trees. Regarding the work in, it presents a 
lattice-based signature scheme optimized for embedded systems, which, for a 100-bit security level, makes use of a public 
key of 12,000 bits and a private key of 2,000 bits, and generates signatures of 9,000 bits. This latter scheme, due to its 
simplicity and efficiency, was selected as signature algorithm for blockchain-related developments like QChain, a post-
quantum decentralized system for managing public-key encryption. 

6.1.4. Super-Singular Elliptic Curve Isogeny Signature Schemes 

It is possible to use supersingular elliptic curve isogenies for creating post-quantum digital signature schemes, but 
there are not in the literature many of such schemes and they still suffer from poor performance. For instance, in 
[87] the authors present different signature schemes based on isogeny problems and on the Unruh transform, which 
makes use of small key sizes and relatively efficient signing and verification algorithms. Another signature scheme based 
on the Unruh transform is presented in, which, for a 128-bit quantum security level, makes use of a 336-byte public key 
and a 48-byte private key, but it generates 122,880-byte signatures (even when using compression techniques). 
Therefore, it is necessary to address key size issues when implementing isogeny-based cryptosystems and Supersingular 
Isogeny Diffie-Hellman (SIDH), especially in the case of resource-constrained devices, which need to use key 
compression techniques that often involve computationally intensive steps. 

6.1.5. Hash–Based Signature Schemes 

The security of these schemes depends on the security of the underlying hash function instead of on the hardness of a 
mathematical problem. This kind of schemes date back from the late 70s, when Lamport proposed a signature scheme 
based on a one-way function. Currently, variants of eXtended Merkle Signature Scheme (XMSS) like XMSS-T and SPHINCS 
[88] are considered promising hash-based signature schemes for the post-quantum era that derive from the Merkle tree 
scheme described in. 

However, some researchers consider XMSS and SPHINCS to be impractical for blockchain applications due to their 
performance, so alternatives have been suggested. For example, XMSS has been adapted to blockchain by making use of 
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a single authentication path instead of a tree, while using one-time and limited keys in order to pre- serve anonymity 
and minimize user tracking. Other authors proposed substituting XMSS with XNYSS (eXtended Naor-Yung Signature 
Scheme), a signature scheme that combines a hash-based one-time signature scheme with Naor-Yung chains, which 
allow for creating chains of related signatures [89]. 

7. Conclusion and Future Enhancements 

Quantum computers pose a serious threat to cryptographic foundations of blockchains, especially relying on classical 
public-key algorithm and hash-based functions. Future-proofing blockchain cryptography by integrating post-
quantum cryptography is essential.   

- Coded-based cryptosystems make use of large keys whose management and operation require a relevant number of 
computational resources. More research is necessary on key compression techniques and on the use of certain 
types of codes and coding techniques. 

- Lattice-based cryptosystems a l s o  n e e d  t o  b e  enhanced in terms of key size, but it can be stated that they are 
currently some of the most promising candidates for implementing schemes for post- quantum blockchains.  

- Multivariate-based public-key cryptosystems still need to be improved to increase decryption speed and to 
decrease key size. However, it should be noted that some multivariate-based signature algorithms optimized for 
the AVX2 instruction set (i.e., LUOV, MQDSS and Rainbow) are clearly faster than most of the compared digital 
signature cryptosystems. 

- Hybrid schemes like the ones tested by Google (CECPQ1 and CECPQ2) seem to be the next step prior to the 
actual implementation of pure post- quantum blockchains, but they require to make use of hardware able to handle 
at the same time two advanced security mechanisms and large payloads. 

- Super-singular elliptic-curve isogeny cryptosystems based on the Unruh transform seem promising, but still need 
to be optimized to decrease their signature size. 

- Hash-based digital signature cryptosystems have in general poor performance, but some researchers have 
suggested new faster algorithms that seem to be practical for blockchain [89] 
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