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Abstract 

Lane-keeping is a vital function in autonomous driving, important for vehicle safety, stability, and adherence to traffic 
flow. The intricacy of lane-keeping control resides in balancing precision and responsiveness across varied driving 
circumstances. This article gives a comparative examination of two reinforcement learning (RL) algorithms—Double 
Deep Q-Network (Double DQN) and Proximal Policy Optimization (PPO)—for lane-keeping across discrete and 
continuous action spaces. Double DQN, an upgrade of standard Deep Q-Networks, eliminates overestimation bias in Q-
values, demonstrating its usefulness in discrete action spaces. This method shines in low-dimensional environments 
like highways, where lane-keeping requires frequent, discrete modifications. In contrast, PPO, a strong policy-gradient 
method built for continuous control, performs well in high-dimensional situations, such as urban roadways and curved 
highways, where continual, accurate steering changes are necessary. The methods were tested in MATLAB/Simulink 
simulations that simulate both highway and urban driving circumstances. Each model integrates vehicle dynamics and 
neural network topologies to build control techniques. Results demonstrate that Double DQN consistently maintains 
lane position in highway settings, exploiting its ability to minimize overestimations in Q-values, thereby attaining stable 
lane centering. PPO outshines in dynamic and unpredictable settings, managing continual control adjustments well, 
especially under difficult traffic conditions and on curving roadways. This study underscores the importance of 
matching RL algorithms to the action-space requirements of specific driving environments, with Double DQN excelling 
in discrete tasks and PPO in continuous adaptive control, contributing valuable insights toward enhancing the flexibility 
and safety of autonomous vehicles. 

Keywords: Autonomous Driving; Lane-Keeping; Reinforcement Learning; Double Deep Q-Network (Double DQN); 
Proximal Policy Optimization (PPO); Action Space 

1. Introduction

Fast development with regard to autonomous driving systems has pressingly demanded the need for line-keeping 
assistance solutions that are robust in nature. LKA is one of the most important features within autonomous driving; it 
keeps the vehicle in its lane through constant changes in steering. This feature is very important since it allows smooth 
and safe driving, minimizing the likelihood of unexpected lane exits, especially at places where there are high speeds or 
congested traffic. 

Objective 

This research is focused on the design and evaluation of reinforcement learning algorithms for efficient keeping-
assistance in autonomous driving, including Double Deep Q-Network[1] for a discrete action context and Proximal 
Policy Optimization (PPO)[2] in continuous control. We should be able to find out the best reinforcement learning 
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approach to line-keeping tasks that can enhance the safety, stability, and responsiveness of an autonomous vehicle by 
investigating the performance of each algorithm under different road and traffic conditions. 

1.1. Why Are Double DQN and PPO Optimal Choices 

Double Deep Q-Network (Double DQN) is chosen for discrete action spaces in autonomous driving due to its ability to 
avoid overestimation bias by isolating action selection from assessment, leading to more stable and precise Q-value 
computations needed for maintaining lane position. In contrast, Proximal Policy Optimization (PPO) is chosen for 
continuous action spaces because its clipping process[3] assures consistent policy updates, limiting dramatic changes 
that can interrupt smooth management. Together, Double DQN and PPO provide a comprehensive foundation for 
effective line-keeping in autonomous vehicles, tackling the constraints of both discrete and continuous action scenarios. 
Here, present a figure, Double DQN and PPO for Stable Action Selection and Policy Updates in Autonomous Driving- 

 

Figure 1 Double DQN and PPO for Stability in Autonomous Driving 

1.2. Mathematical Formulation 

Line-keeping in autonomous vehicles can be modeled as a control problem[4] where the goal is to minimize lateral 
deviation from the lane center and maintain an optimal vehicle orientation angle. 

1.2.1. State Representation 

Let the vehicle state at time t be represented by: 

𝑠𝑡 = ( 𝑦𝑡 , 𝜃𝑡 , 𝑣𝑡),  

Where,  
𝒚𝒕 is the lateral deviation from the lane center, 𝜽𝒕 is the orientation angle (yaw) relative to the lane direction, 𝒗𝒕 is the 
vehicle’s longitudinal velocity. 

1.2.2. Control Action 

The control action 𝒂𝒕 determines the steering angle 𝜹 required to minimize the deviation: 
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 Discrete Action (Double DQN): Action 𝒂𝒕  is selected from a set of discrete steering angles, e.g, 
{−2°, −1°, 0°, 1°, 2°}. 

 Continuous Action (PPO): Action 𝒂𝒕 is chosen from a continuous range, [−𝛿𝑚𝑎𝑥 , 𝛿𝑚𝑎𝑥], allowing final streeing 
adjustments. 

1.2.3. Reward Function 

The reinforcement learning (RL) model optimizes a reward function 𝑅𝑡 to penalize lane deviations and abrupt streering 
actions[5] : 

𝑅𝑡 =  −𝛼|𝑦𝑡| −  𝛽|𝜑𝑡| −  𝛾 |𝛿𝑡| …………. (1) 

Where, 𝛼, 𝛽, 𝛾  are weights that prioritize lane -centering, orientation stability, and minimal streering changes, 
respectively. 

1.3. Algorithmic Approach 

 Double DQN: Double DQN updates Q-values by minimizing the Bellman error while using a double estimator 
to reduce Q-value overestimation[6]. The value update is as follows: 

 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑟𝑡 +  𝛾𝑄(𝑆𝑡+1, 𝑎𝑚𝑎𝑥) −  𝑄(𝑠𝑡 , 𝑎𝑡)) ………. (2)[7] 

Where, 𝑎𝑚𝑎𝑥= arg 𝑚𝑎𝑥𝑎′ 𝑄(𝑠𝑡+1, 𝑎′) using the target network. 

 PPO : PPO applies a clipped objective for policy update, maintaining stability in continuous control[8].The 
objective function is :  

𝐿(𝜃) = 𝐸 [ min (
𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑜𝑙𝑑(𝑎|𝑠)
𝐴(𝑠, 𝑎), 𝑐𝑙𝑖𝑝 (

𝜋𝜃(𝑎|𝑠)

𝜋𝜃𝑜𝑙𝑑(𝑎|𝑠)
, 1 − 𝜖, 1 + 𝜖) 𝐴(𝑠, 𝑎))] ……..(3)[9] 

Where 𝝅𝜽(𝒂|𝒔) is the policy, A(s, a) is the advantage function, and 𝝐 is the a clipping parameter.Here a Conceptual 
Diagram of Line-Keeping Assistance in Autonomous Driving- 

 

Figure 2 Conceptual Diagram of Line-Keeping Assistance[10] 
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The primary goal in this paper is to minimize the lateral deviation 𝒚𝒕  and orientation deviation 𝜃𝑡 from the lane 
center. By implementing these algorithms, we aim to: 

Double DQN: Enable effective discrete adjustments suitable for structured highway environments with minimal 
computational load. 

PPO: Provide smoother, continuous steering control suitable for dynamic road conditions, such as curved lanes and 
urban driving.the comparative analysis of these reinforcement learning algorithms, we seek to identify the optimal 
method for line-keeping tasks across various driving scenarios, thereby enhancing the robustness of autonomous 
driving systems. We aim to ascertain: 

 Stability: The efficacy of each approach in preserving lane centering with little variance over time. 
 Adaptability: The capacity of each algorithm to adjust to diverse road types and lane curvature.  
 Efficiency: Assessment of computational resources and real-time applicability of each method for practical 

autonomous driving situations.  

This research seeks to determine the most effective reinforcement learning method for safe and efficient line-keeping, 
thereby advancing the overall development of autonomous vehicle safety systems.  

2. Model Overview  

Key components of the Dynamic Model- 

2.1. Adapted State Variables 

 Lateral Deviation 𝒚𝒕  : The lateral distance from the vehicle’s present position to the lane centerline, 
continuously updated. 

 Yaw Angle 𝜽𝒕: The angular deviation relative to the lane direaction, dynamically adapted based on real-time 
feedback. 

 Curvature 𝒌𝒕: A dynamic curvature value dependent on road geometry, computed using a forecast model for 
future road segments. 

 Predicted Deviation 𝒚𝒕+𝟏 and Predicted Yaw Angle 𝜽𝒕+𝟏 : Anticipated state values one step ahead, allowing the 
agent to preemptively adjust steering. 

2.2. Dynamic Action Variable  

Steering Angle 𝜹𝒕 : The control output dynamically varies within a continuous range and adapts based on projected 
deviations. 

2.3. Dynamic Reward Function  

The reward function is now adaptive, dynamically modifying weights based on road conditions (e.g, abrupt turns or 
straight roads) and traffic density. The incentive penalizes not just deviations but also rapid changes in steering, offering 
smoother lane-keeping. 

Mathematical Formulation of the Dynamic Model- 

 State Representation with Predictive Elements  

To make the agent more anticipative, the state 𝑠𝑡  at any time t includes both current and predicted deviations :  

𝑠𝑡 = (𝑦𝑡 , 𝜃𝑡 , 𝑘𝑡 , 𝑦𝑡+1, 𝜃𝑡+1) 

Where, 𝑦𝑡+1 and 𝜃𝑡+1 are the predicted lateral deviation and yaw angle at the next timestep, calculated based on current 
speed and road curvature. 
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 Action Representation with Dynamic Range  

The action 𝑎𝑡 = 𝛿𝑡 is chosen within a dynamic range, where the maximum streering angle varies based on predicted 
curvature : 

𝑎𝑡𝜖 [−𝛿𝑚𝑎𝑥(𝑘𝑡), 𝛿𝑚𝑎𝑥(𝑘𝑡)] 

Where 𝛿𝑚𝑎𝑥(𝑘𝑡) increases for higher curvatures, allowing sharper turns when necessary. 

 Adaptive Reward Function 

The reward 𝑅𝑡 is now dynamically shaped based on curvature 𝑘𝑡  or dense traffic D, penalizing deviations more heavily 
in these scenarios.The term 𝛿𝑡 −  𝛿𝑡−1 penalizes abrupt streeing changes, promoting smooth adjustments. 

 Predictive Control for Future States 

The predicted lateral deviation 𝑦𝑡+1  and yaw angle 𝜃𝑡+1  are calculated based on the vehicle’s velocity 𝑣𝑡  and road 
curvature 𝑘𝑡:[11] 

𝑦𝑡+1 =  𝑦𝑡 + 𝑣𝑡 sin(𝜃𝑡) ∆𝑡 ………….. (4) 

𝜃𝑡+1 =  𝜃𝑡 + 
𝑣𝑡𝛿𝑡

𝐿
 ∆𝑡 …………. (5) 

Where, ∆𝑡 is the timestep duration.L is the vehicle’s wheelbase, influencing the turning radius. 

2.4. Dynamic Training Mechanism  

 Environment Simulation with Changing Conditions: The training environment dynamically alters road 
curvature and traffic density to mirror real-world settings, boosting the agent's adaptation to various 
conditions.[12] 

 Dynamic incentive Rescaling[13]: The incentive system adapts based on the situation, placing a larger focus on 
lane adherence and smooth steering, especially in tough regions like sharp curves and dense traffic. In contrast, 
penalties are lowered on straight, simpler routes. 

 

Figure 3 Dynamic DRL Lane-Keeping System 

 Continuous Learning with Episodic Reset[14]: Each training episode begins with random initial circumstances 
for important variables, letting the agent to experience a wide range of driving situations, fostering adaptability 
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and strong learning. Here, we present a Dynamic Deep Reinforcement Learning (DRL)-based Lane-Keeping 
System, focusing on predictive position and yaw adjustments –  

The system calculates 𝑦𝑡+1 and 𝜃𝑡+1 based on road curvature and vehicle velocity, preparing the agent for upcoming 
lane adjustments.The DRL agent selects 𝛿𝑡  within a dynamically adjusted range, providing sharper turns when 
necessary for high-curvature segments.Rewards are calculated using dynamic weights, emphasizing stability and lane 
adherence under high-curvature or high-density traffic conditions.After each episode, intial states are randomized, 
training the agent across a range of driving scenarios to improve adaptability. 

3. Benefit of the Dynamic Model  

The inclusion of predictive states 𝑦𝑡+1 and 𝜃𝑡+1 allows the agent to make proactive adjustments[15]. By dynamically 
altering the range of control movements, the model optimizes handling on varied road curves, ensuring stability and 
precision in steering.The reward function is adapted to the environment, promoting safe and smooth conduct under 
complex settings, which refines the agent's activities based on situational demands. 

3.1. Enhanced 3 DOF Dynamic Bicycle Model[16] 

The 3 DOF model gives a more thorough approach by integrating the longitudinal, lateral, and yaw motions of the 
vehicle. It permits the simulation of acceleration along the longitudinal axis and includes both lateral forces and yaw 
moments, making it suited for dynamic lane-keeping in a range of road and traffic scenarios. 

3.1.1. State Variables[17] 

 𝑣𝑥  : Longitudinal velocity component(velocity along the x- axis ). 
 𝑣𝑦 : Lateral velocity component (velocity along the y-axis). 

 𝜔𝑧 : Yaw rate ( rotation rate around the z-axis) 

3.1.2. Forces and Moments 

 Lateral Forces (𝐹𝑦𝑓 and 𝐹𝑦𝑟): Generated by the front and rear tires due to the cornering stiffness. 

 Yaw Moment ( 𝑀𝑧 ):Resulting from the lateral forces at different distances from the vehicle’s center of 
gravity(CG). 

 Longitudinal Force(𝐹𝑥):Acts along the direction of travel, affecting acceleration and deceleration. 

3.2. Mathematical Model[18] 

Lateral and Longitudinal Forces – 

The lateral forces 𝐹𝑦𝑓 and 𝐹𝑦𝑟 are given by- 

𝐹𝑦𝑓 = 𝐶𝑓𝛼𝑓 , 𝐹𝑦𝑟 =  𝐶𝑟𝛼𝑟  

Where, 𝐶𝑓 and 𝐶𝑟are the cornering stiffness coefficients for the front and rear tires. 𝛼𝑓 and 𝛼𝑟 are the slip angles of the 

front and rear tires, calculated as : 

𝛼𝑓 =  𝛿𝑓 −  
𝑣𝑦+𝑙𝑓𝜔𝑧

𝑣𝑥
 ………….. (6) 

𝛼𝑟= - 
𝑣𝑦−𝑙𝑟𝜔𝑧

𝑣𝑥
 ………….. (7) 

Where, 𝛿𝑓 is the front steering angle, 𝑙𝑓  is the distance from the CG to the front axle, and 𝑙𝑟  is the distance from CG he 

real axle. 

3.3. Equations of Motion  

The vehicle’s motion equations in the 3 DOF model are derived from Newton’s second law and include longitudinal , 
lateral, and yaw components[19]: 
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3.3.1. Longitudinal Dynamics  

𝑣′𝑥  = 
𝐹𝑥−𝐹𝑦𝑓sin (𝛿𝑓)

𝑚
+  𝑣𝑦𝑤𝑧 …………….(8) 

3.3.2. Lateral Dynamics: 

𝑣′𝑦 =
𝐹𝑦𝑓 cos(𝛿𝑓)+𝐹𝑦𝑟 

𝑚
−  𝑣𝑥𝜔𝑧 ………………..(9) 

3.3.3. Yaw Dynamics: 

𝜔′𝑧 =  
𝑙𝑓𝐹𝑦𝑓 cos(𝛿𝑓)−𝑙𝑟𝐹𝑦𝑟

𝐼𝑧
 ………….. (10) 

Where, m is the vehicle mass.𝐼𝑧 is the moment of intertia around the z-axis. 

Dynamic State Update: The state vector x = [𝑣𝑥 , 𝑣𝑦 , 𝑤𝑧] is updated at each timestep based on the applied steering angle 

𝛿𝑓 and the longitudinal force 𝐹𝑥 . This results in more accurate lane-keeping control by incorporating both lateral and 

longitudinal dynamics in the response.Here, the 3 DOF Dynamic Bicycle Model[20]- 

 

Figure 4 3 DOF Dynamic Bicycle Model 

The 3 DOF Dynamic Model presents a complex approach to vehicle dynamics by including longitudinal forces and yaw 
rate, resulting in improved accuracy in reproducing real-world vehicle behavior during acceleration, deceleration, and 
lane changes. This model optimizes stability control by permitting real-time modifications of yaw and lateral forces, 
assuring stability in high-speed and sharp-turn conditions. Additionally, its combination with predictive control enables 
for anticipatory replies to lane-keeping directives, particularly on curving roads, making it well-suited for advanced 
lane-keeping assist systems that can manage different driving circumstances with enhanced responsiveness and 
stability. 
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4. Double DQN Agent Creation  

Double DQN extends the regular DQN by introducing a separate target network[21], which helps to eliminate 
overestimation bias by decoupling action selection and action evaluation. This technique improves stability, making it 
well-suited for discrete action spaces. 

4.1. Observations and Inputs 

 State Variables - Lateral deviation 𝑒1, relative yaw angle 𝑒2, their derivatives (𝑒′1, 𝑒′2), and integrals (∫ 𝑒1 ∫ 𝑒2) 
to capture past and current behavior. 

 Action Space - Discrete set of 31 steering angles, ranging from −15° to +15° in 1° increments. 
 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 − 𝜖- greedy policy with decay for balanced exploration and exploitation.Here are the 

Double DQN Network Architecture[22] – 

 

Figure 5 Double DQN Network Architecture 

The Double Deep Q-Network (Double DQN) architecture represents a significant improvement over traditional Q-
learning techniques, particularly addressing the issue of overestimation bias often seen in reinforcement learning. This 
architecture begins with state inputs, which represent various features or observations from the environment, such as 
positional data, velocities, or sensor inputs in robotics applications. These inputs are passed through multiple fully 
connected layers, where the network learns to extract hierarchical representations of the state space, enabling it to 
capture complex, nonlinear relationships. A key feature of the Double DQN is the use of dual streams that separately 
compute the state value (how good it is to be in a specific state) and action advantages (how beneficial it is to take a 
specific action relative to other actions in that state). These dual streams are then combined to estimate the Q-values, 
using a formulation that ensures stability and prevents overestimation by normalizing the advantage function. 
Additionally, the inclusion of a target network, which updates more slowly than the primary network, ensures smoother 
learning by decoupling target value updates from the current network’s rapidly changing parameters. This design 
significantly reduces the instability that can arise during training and leads to more robust convergence. By balancing 
stability, precision, and learning efficiency, the Double DQN is particularly well-suited for solving complex decision-
making problems in high-dimensional state and action spaces, such as autonomous navigation, strategic game playing, 
and dynamic resource allocation. Its elegant combination of theoretical soundness and practical applicability has made 
it a foundational approach in modern reinforcement learning. 

4.2. Training Strategy and Hyperparameters 

 Experience Replay: Uses a large replay buffer to store past experiences (s, a, r, s′). 
 Target Network Update : The target network is periodically synchronized with the main network to ensure 

stability. 
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Table 1 Hyperparameters of Double DQN 

Discount Factor 𝛾 0.99 

Hyperparameter Value 

Replay Memory Size 1, 000, 000 

Learning Rate 0.001 

Batch Size 64 

ϵ-decay Rate 0.005 

Double DQN’s structure helps reduce overestimation, improving decision-making stability in discrete action 
environments. The use of experience replay and target networks further supports consistent learning , ideal for lane-
keeping scenarios where small, discrete adjustments are necessary. The architecture of Double DQN mitigates 
overestimation, hence enhancing decision-making stability in discrete action settings. The implementation of 
experience replay and target networks enhances consistent learning, which is optimal for lane-keeping situations that 
require little, discrete modifications. 

4.3. PPO Agent Creation 

PPO is an advanced policy gradient method suitable for continuous control tasks. It introduces a clipped surrogate 
objective to limit drastic policy updates, enhancing stability and performance in dynamic environments. 

4.4. Observations and Inputs 

 State variables -Same as Double DQN, including 𝒆𝟏, 𝒆𝟐,𝒆′𝟏, 𝒆′𝟐, and integrals, ∫ 𝒆𝟏, ∫ 𝒆𝟐. 

 Action Space – Continuous, allowing for precise steering angle adjustments within the range [−𝟏𝟓°, +𝟏𝟓°]. 
 Exploration Strategy – Gaussian noise applied to the policy for exploration in continuous space . 

Here is the PPO Network Architecture[23]- 

 

Figure 6 PPO Network Architecture 

The Proximal Policy Optimization (PPO) Actor-Critic Network architecture combines an actor network and a critic 
network to achieve stable and efficient reinforcement learning. State inputs representing environmental observations 
are processed by two separate streams: the actor network, which outputs a probability distribution over actions to 
guide decision-making, and the critic network, which estimates the value function to assess the quality of the policy. 
Both networks consist of fully connected layers tailored to their respective tasks. PPO introduces a clipped objective 
function to limit policy changes during training, ensuring stability and avoiding catastrophic updates. This design 
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enables effective exploration by the actor while leveraging the critic's value estimates for more directed policy 
improvement. Widely used in tasks involving continuous action spaces, such as robotics and autonomous systems, PPO’s 
balance of performance, stability, and scalability has made it a cornerstone in modern reinforcement learning. 

4.5. Training Strategy and Hyperparameters 

Proximal policy optimization is a reinforcement learning technique that effectively finds a good compromise between 
effective learning and stability, which resulted in a "clipped objective" approach[23]. This technique constrains the 
policy update by limiting the difference between new and old policies, helping prevent the model from making updates 
that are too large and therefore potentially destabilizing. PPO uses Generalized Advantage Estimation for advantage 
computation, reducing the variance in the advantage function without introducing bias for better sample efficiency[24]. 
Put together, these mechanisms allow PPO to maintain stable and efficient learning; it is hence pretty suitable for a 
range of continuous and discrete action tasks. In fact, several hyperparameters[25] involved with PPO become highly 
critical; for example, the clipping range, learning rate, and discount factor in GAE—all these need delicate tuning in order 
to derive the best performance. 

Table 2 PPO Hyperparameters 

Hyperparameter Value  

Discount Factor (γ) 0.99 

Clipping Parameter (ε) 0.2 

Learning Rate 0.0003 

Batch Size 64 

Epochs per Update 10 

Continuous updates for control and stability make the PPO act aptly for lane-keeping tasks that require finer steering. 
The clipped objective and estimation of advantage enable the PPO to adapt to changes in road conditions with smooth 
and reliable adjustments being done in seamless order. 

Table 3 Comparison of Double DQN and PPO for Lane-Keeping Tasks 

Feature Double DQN  PPO 

Action Space Discrete (31 actions) Continuous 

Stability Mechanism Target network, experience replay Clipped objective 

Exploration ϵ\epsilonϵ-greedy Gaussian noise 

Best Use Case Structured roads with minor changes Complex, dynamic environments 

By using Double DQN for discrete steering angles and PPO for continuous adjustments, each agent can address specific 
lane-keeping challenges, ensuring safe and adaptive control for autonomous vehicles. 
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5. Simulation and Results 

 

Figure 7 Double DQN Reward Convergence 

Double DQN shows a more variable output trend through the training process, dropping lower for the earlier episodes 
but then rising to an output reward plateau around episode 1000. Yet, the expected rewards stay lower than those 
reached by PPO even at convergence. The reasoning behind this slower convergence and increased variance lies with 
the nature of the actions in Double DQN being discrete, which doesn't provide the necessary granularity action for 
precise control. Thus, the Double DQN cannot make delicate adjustments which is necessary for optimal performance 
in problems such as lane-keeping where continuous control is beneficial. 

 

Figure 8 PPO Reward Convergence 

PPO agent reaches quickly separates from the rest due to competing at stable and high rewards , reaching this point 
around episode 800 with less variation in its reward curve and thus stable learning. PPO leverages a continuous action 
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space, allowing for more nuanced changes which speed this process up and contribute to the stability of training. This 
continuity makes PPO very fitting for applications that require smooth control, like lane-keeping, which needs stable 
gradual controlled inputs to be successful. 

The PPO agent’s continuous control provides superior lane-keeping performance, allowing it to reach higher rewards 
more quickly with less fluctuation compared to Double DQN. The Double DQN agent, while effective, is limited by its 
discrete action space, resulting in slower and more variable convergence. 

Table 4 Comparative Analysis of PPO and Double DQN  

Hyperparameter Double DQN PPO 

Learning Rate 0.001 0.0003 

Discount Factor (γ) 0.99 0.99 

Batch Size 64 64 

Replay Memory Size 1, 000, 000 Not Applicable 

Clip Range (ε) Not Applicable 0.2 

Target Network Update Every 500 steps Not Applicable 

Policy Update Frequency Every 4 steps Every episode (after trajectory collection) 

Gradient Clipping Not Used Yes (to stabilize training) 

Exploration Strategy ε-greedy decay (0.01 minimum) Gaussian noise 

Entropy Coefficient Not Applicable 0.01 (to encourage exploration) 

GAE Lambda (λ) Not Applicable 0.95 (for advantage estimation) 

Optimizer Adam Adam 

Max Episodes 5000 5000 

Stop Training Value -1 -1 

5.1. Explanation of Key Differences 

An explicit bilateral control is employed by distinct architectures of algorithms (Double DQN , PPO) to gain control in 
autonomous lane-keeping. Double DQN combines a replay memory buffer for experience replay and a discrete actions 
space and therefore better sample efficiency, receives advice from an ε-greedy exploration strategy by deciding optimal 
actions and explore by using ε, and ε decay of ε-greedy over time. On the other hand, PPO has no replay memory, because 
its action space is continuous and only uses Gaussian noise for exploration. To stabilize policy updates and avoid drastic 
changes that would slow down learning, PPO is designed by using a clipped objective function. The hyperparameter 
optimization of these specific and corresponding features enables Double DQN to perform discrete action efficiently but 
results its design poorly for continuous control, leading to generally less stable and smooth lane-keeping performance 
corroborated by PPO. 

Figure 7: Lateral error of Double DQN and PPO when lane-keeping in time (x-axis) against lateral error (y-axis: distance 
to the centerline of the lane). Since Double DQN (in blue) starts with a large lateral error (indicating significant deviation 
away from the centerline), this error decreases as the agent learns, but eventually plateaus at a level that is overall a bit 
higher than PPO due to Double DQN having a discrete action space that is not as fine-tunable. By contrast, the PPO agent 
(in orange) initiates with a comparable starting error of 15 and decreases it more rapidly, converging to a lesser 
remaining error compared to Double DQN. The continuous control of PPO enables finer steering to the lane center with 
a tiny margin of error. As a result, PPO exhibits superior lane-keeping performance because it repeatedly maintains a 
more accurate position with continuous, small adjustments. 
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Figure 9 Lateral Error Over Time for Double DQN and PPO 

 

 

Figure 10 Yaw Error Over Time for Double DQN and PPO 

The plot of the yaw error with respect to time is different between the performance of Double DQN and PPO retaining 
orientation. They both init with large yaw errors at the beginning of the training process, which means great deviation 
from the target alignment. The error goes down for Double DQN when it learns how to control its orientation , but 
stabilizes with minor fluctuations due to its discrete action space, which results in abrupt adjustments instead of smooth 
corrections. In contrast, PPO decreases the yaw error faster and sustains an extremely stable and minimal error 
condition, which proves its superiority in continuous action spaces. This smooth way of convergence allows PPO to 
perform a great deal better in orientation control by minimizing oscillation, important for lane-keeping purposes. 
Hence, PPO's higher stability and lower yaw error signal more precise and consistent alignment with the lane center 
compared to Double DQN. 

5.2. Overall Summary 

This continuous action space decides the high performance of the lane-keeping task of the PPO algorithm because it 
allows for faster reward convergence[26], higher stability, and smoother control; hence, it is associated with lower 
lateral and yaw errors. In contrast, discrete actions by Double DQN need more episodes to stabilize processes and have 
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slightly higher residual lateral and yaw errors. While PPO can keep the lane center with great precision and orientation, 
it is, because of that, more suitable for complicated and dynamic tasks, whereas Double DQN, though effective, still 
suffers from less precise adjustments in its control. 

6. Conclusion 

This study highlights the significance of choosing appropriate reinforcement learning (RL) algorithms for specific 
driving environments in autonomous lane-keeping. Through a comparative analysis, Double DQN was shown to be 
highly effective in structured highway scenarios with discrete actions, efficiently maintaining lane centering while 
minimizing overestimation in Q-values. However, its discrete action nature limits the flexibility needed for 
environments requiring continuous adjustments. 

Conversely, PPO demonstrated superior performance in dynamic, complex driving conditions, such as urban roadways 
and curved highways, by allowing continuous, smooth control. The PPO model quickly converged to stable and higher 
rewards, attributed to its clipped objective function and continuous action space, providing nuanced steering 
adjustments crucial for lane-keeping in diverse conditions. 

The results underscore the need to align RL algorithms with action-space requirements specific to each driving scenario. 
Double DQN’s simplicity and stability make it suitable for low-complexity, discrete environments, while PPO's 
adaptability and smooth control render it ideal for high-dimensional, continuous environments. Together, these 
findings contribute valuable insights for enhancing the robustness, adaptability, and safety of autonomous lane-keeping 
systems, advocating for tailored RL approaches based on operational contexts. 
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