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Abstract 

Grasserie disease, caused by the Bombyx mori nuclear polyhedrosis virus (BmNPV), is one of the most severe diseases 
affecting silkworms, leading to significant economic losses in sericulture. This study leverages machine learning 
techniques to detect Grasserie disease in FC1 x FC2 double hybrid silkworms, using image processing and classification 
methods to automate detection. A dataset of 737 images, consisting of 322 infected and 415 healthy silkworms, was 
analyzed. Local Binary Patterns (LBP) were used for feature extraction, followed by Principal Component Analysis (PCA) 
for dimensionality reduction. A decision tree classifier achieved an accuracy of 92.1%, recall of 92.4%, precision of 
90.2%, F1 score of 91.6%, and specificity of 90.7%. This paper outlines the methodology, discusses the results, and 
suggests future improvements for practical applications in sericulture. 
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1. Introduction

Grasserie disease, caused by the Bombyx mori nuclear polyhedrosis virus (BmNPV), represents a critical challenge for 
the silk industry. Affecting silkworm larvae, this disease often leads to significant decreases in silk quality and yield, 
impacting the economy in regions heavily dependent on sericulture [1]. Grasserie-infected silkworms exhibit symptoms 
such as swollen bodies and exude a milky white fluid due to virus-induced degradation of hemocytes. Traditional 
detection methods for Grasserie are largely based on visual inspection, requiring trained personnel to identify 
symptoms manually, which can be both labor-intensive and susceptible to errors, particularly under large-scale 
sericulture operations. These limitations highlight the need for automated and precise diagnostic systems capable of 
early detection to prevent disease spread [2-5]. 

Machine learning, particularly in image processing, has seen transformative applications across agriculture, veterinary 
sciences, a nd disease diagnosis. For agricultural diseases, machine learning methods have shown promise in detecting 
infections in plants and animals by analyzing subtle visual and textural changes [6,7]. In the case of Grasserie, these 
methods can leverage image-based feature extraction techniques to identify specific patterns associated with the 
disease, enabling quick and objective diagnoses. Through automation, machine learning can also help reduce labour 
costs and improve diagnostic consistency. While machine learning models have been widely explored for human health 
diagnostics, their application in sericulture remains relatively underexplored [8-10]. 

This study focuses on the detection of Grasserie disease in FC1 x FC2 double hybrid silkworms by employing machine 
learning techniques. Using a dataset comprising 737 silkworm images, we applied Local Binary Patterns (LBP) for 
feature extraction and Principal Component Analysis (PCA) for dimensionality reduction, followed by a decision tree 
classifier to distinguish between infected and healthy silkworms. LBP is particularly effective for capturing local 
textures, which are essential in differentiating Grasserie symptoms [2,4]. PCA further helps reduce dimensionality, 
simplifying the dataset for efficient classification. The choice of a decision tree classifier aligns with the objective of 
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creating an interpretable model, as it provides a clear rationale for each classification decision based on observed 
features. 

The following sections describe the dataset, preprocessing, feature extraction, dimensionality reduction, and 
classification methods used. We then present the results of our experiments, demonstrating the model's effectiveness 
and discussing its implications for disease detection in sericulture. Lastly, we conclude with insights into the potential 
improvements and future applications of machine learning for diagnosing Grasserie and other diseases in silkworms. 

2. Methodology 

2.1.  Dataset 

The dataset utilized in this study consists of 737 images of FC1 x FC2 double hybrid silkworms, including 322 infected 
and 415 healthy specimens. Each image was labeled according to the disease status, allowing the model to differentiate 
between Grasserie-positive and negative cases. Figure 1 shows the sample images of healthy and Grasserie-infected 
silkworms, showing visible symptoms like swelling and body colour changes.  

 

Figure 1 Sample images of (a) healthy and (b) Grasserie-infected silkworms 

2.2. Preprocessing 

Preprocessing steps were crucial in preparing the images for feature extraction and analysis: 

• Grayscale Conversion: To reduce computational load, images were converted to grayscale, simplifying them 
while retaining essential texture details. 

• Normalization: All images were normalized to ensure uniform pixel intensity distribution, facilitating better 
feature extraction. 

• Noise Reduction: A median filter was applied to remove minor artifacts, maintaining the integrity of essential 
features like body texture and patterns without introducing distortions. 

2.2.1. Feature Extraction Using Local Binary Patterns (LBP) 

LBP was selected for feature extraction in this study due to its effectiveness in capturing fine-grained textural details, 
which are essential for distinguishing between healthy and Grasserie-infected silkworms. The LBP method is a powerful 
tool in texture analysis, as it operates by comparing each pixel's intensity with its surrounding neighbors in a defined 
pattern, thereby capturing local spatial information [11,12]. This approach makes LBP particularly suited for tasks 
involving subtle variations in texture, which are often indicative of disease in biological images. The LBP process works 
by examining each pixel and its surrounding neighborhood, comparing the center pixel's intensity with each 
neighboring pixel. If a neghboring pixel has intensity greater than or equal to the center pixel, a binary "1" is assigned; 
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otherwise, a "0" is assigned. This binary sequence, typically 8 bits long when using an 8-neighbor pattern, is then 
converted into a decimal value. The resulting values across an image form a histogram representing the frequency of 
different binary patterns, which can be highly descriptive of the underlying texture. 

In our study, each silkworm image was converted into an LBP histogram, which served as a compact representation of 
its textural characteristics. This transformation captured the minute differences in texture associated with the Grasserie 
infection, such as body swelling and changes in skin texture, which are often too subtle for the human eye to detect 
consistently. LBP’s ability to encode these variations into a binary format allows for efficient analysis, as each image’s 
texture is distilled into a feature vector that preserves critical distinctions indicative of disease. Moreover, LBP has the 
advantage of being invariant to monotonic changes in grayscale, meaning that variations in lighting or minor changes 
in image intensity do not affect its performance. This property makes LBP particularly robust for real-world 
applications, where imaging conditions might vary. Given these attributes, LBP not only provides a reliable way to 
capture relevant features but also significantly reduces the dimensionality of the data by converting complex textures 
into simpler numerical forms. 

2.2.2. Dimensionality Reduction with Principal Component Analysis (PCA) 

PCA was employed to reduce the complexity of the feature set derived from the Local Binary Patterns (LBP) while 
preserving critical information necessary for effective classification [13]. As a statistical technique, PCA is highly 
effective for transforming high-dimensional data into a smaller number of dimensions by identifying the principal 
components, or directions, in which the data varies the most. By focusing on these principal components, PCA allows us 
to retain the most significant patterns in the data, which are essential for distinguishing between infected and healthy 
silkworms. The LBP-derived feature set, although highly informative, is inherently high-dimensional due to the wide 
range of textures it captures from each silkworm image. Such a feature set can be challenging for machine learning 
algorithms, as high-dimensional data may include redundant or irrelevant features that add noise, reduce model 
interpretability, and increase computational cost. PCA addresses this by transforming the original features into a set of 
orthogonal, linearly uncorrelated components, each explaining a portion of the total variance in the data. By ranking 
these components according to their variance, PCA enables the selection of a subset that encapsulates the majority of 
the dataset’s informational content [14,15]. 

In our study, PCA was applied to condense the LBP features, effectively reducing the dimensionality of the feature space 
while preserving the variance that is most relevant to disease detection. This process involved calculating the covariance 
matrix of the LBP-derived features, followed by identifying the eigenvectors and eigenvalues. The eigenvectors with the 
largest eigenvalues correspond to the directions in which the data varies the most, and these vectors form the principal 
components. By retaining only the top principal components, we retained the structure and information of the original 
data but with significantly fewer dimensions. 

2.2.3. Classification with Decision Tree 

For the classification of Grasserie disease in silkworms, a decision tree classifier was selected due to its interpretability, 
simplicity, and effectiveness, particularly in binary classification tasks like this one. Decision trees are non-parametric 
models that operate by recursively partitioning the feature space into regions with homogeneous labels [16]. At each 
step, the algorithm selects the feature and threshold that best split the data based on a chosen criterion, such as Gini 
impurity or entropy. This process results in a hierarchical structure that defines a sequence of decision rules, guiding 
the model’s classification of new samples by traversing these rules from the root node to a leaf node. 

In our study, the decision tree model was trained on 80% of the dataset, with the remaining 20% reserved for testing. 
This split allowed us to evaluate the model’s generalization to unseen data, ensuring its reliability and effectiveness 
when applied to real-world samples. The training process involved recursively selecting LBP-derived, PCA-reduced 
features that best differentiated between infected and healthy silkworms, creating a tree structure where each internal 
node represents a decision based on one of these features. The leaf nodes of the tree indicate the predicted class, either 
"Grasserie-infected" or "healthy," based on the path traversed by a sample through the tree. 

To achieve optimal performance, hyperparameters such as the maximum depth of the tree, minimum samples per leaf, 
and the splitting criterion were tuned through a systematic grid search [17, 18]. The maximum depth parameter 
controls the complexity of the model by limiting the number of hierarchical splits, which helps prevent overfitting by 
ensuring the tree does not grow excessively complex. Limiting the tree’s depth forces it to focus on the most impactful 
splits, thereby improving its robustness. The minimum samples per leaf parameter, on the other hand, controls the 
minimum number of samples required to create a new node. By adjusting this parameter, we ensured that each leaf 
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node had sufficient data to provide a stable prediction, reducing the likelihood of spurious splits that might capture 
noise rather than meaningful patterns. 

The grid search process systematically evaluated different combinations of these hyperparameters to identify the 
configuration that maximized classification accuracy and minimized the risk of overfitting [19]. For this purpose, a range 
of values for each parameter was defined, and the model’s performance was assessed on a validation set for each 
possible combination. This method allowed us to select the best-performing hyperparameters based on metrics such as 
accuracy, precision, recall, and F1 score, ensuring that the decision tree could make accurate predictions while retaining 
interpretability. 

3. Results and Discussion 

The decision tree classifier achieved the following performance metrics as shown in table 1. 

Table 1 Classification results  

Model LBP-PCA-DT 

Accuracy 92.1 

Recall 92.4 

Specificity 90.7 

Precision  90.2 

f1 score  91.6 

 

The model’s performance metrics demonstrate a strong ability to detect Grasserie disease in silkworms accurately and 
reliably. With an overall accuracy of 92.1%, the model shows that it can classify silkworms as healthy or infected with 
high precision, a crucial feature for early intervention and disease management in sericulture. The breakdown of 
individual performance metrics further underscores the robustness and reliability of this detection approach. The recall 
of 92.4% indicates that the model is highly effective at identifying infected silkworms, minimizing the number of false 
negatives. This is particularly important in disease detection, where missing an infected sample can lead to uncontrolled 
disease spread. In this study, a high recall means the model is capturing most cases of infection, supporting timely 
intervention efforts. 

The specificity of 90.7% reflects the model’s capacity to correctly identify healthy silkworms, effectively reducing false 
positives. In practical applications, this high specificity ensures that healthy silkworms are not incorrectly classified as 
infected, thereby avoiding unnecessary interventions and associated costs. By balancing high specificity with a high 
recall rate, the model provides a reliable tool for decision-making in the early stages of disease control. Precision, 
calculated at 90.2%, further supports the model's reliability in classification tasks by indicating that the majority of 
samples predicted as infected were truly infected. High precision is essential to prevent misclassification, which can 
otherwise lead to undue treatments or incorrect preventive measures. Paired with a high recall, the precision score 
assures that the model is both sensitive and specific in detecting Grasserie disease. The F1 score of 91.6% confirms the 
model’s balanced performance across precision and recall, highlighting its overall efficiency in disease detection. The 
F1 score, a harmonic mean of precision and recall, is a useful indicator in this binary classification task because it shows 
the model’s ability to handle both types of classification errors (false positives and false negatives). This balance is key 
to ensuring that the model is robust enough for operational use. 

Receiver Operating Characteristic (ROC) Curve and Area Under Curve (AUC): An ROC curve was drawn to assess the 
model's classification threshold performance visually ans shown in figure 2. The curve plots the true positive rate 
against the false positive rate at various threshold settings, providing insight into the model’s ability to separate the 
infected from the healthy class across different decision boundaries. The AUC score of 0.91 is a strong indicator of the 
model’s discriminative power. An AUC near 1.0 signals that the model effectively differentiates between infected and 
healthy silkworms, making it a dependable classifier for this task [20]. In field settings, a high AUC enhances confidence 
in the model’s predictions, regardless of where the threshold is set. 
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The choice of Local Binary Patterns (LBP) for feature extraction played a critical role in the model's success. LBP is 
known for its robustness in capturing local textural patterns, which are often indicative of Grasserie symptoms. By 
converting each image into a histogram of LBP features, the model could encode essential textural information 
compactly, preserving critical differences between infected and healthy silkworm samples. The application of PCA 
further refined this feature set by reducing dimensionality, which ensured that the decision tree classifier could operate 
efficiently. PCA selected the most variance-explaining features, removing noise and irrelevant data, which might 
otherwise have burdened the classifier. This reduced dataset proved sufficient for high performance, allowing the 
decision tree to focus on informative features alone. The decision tree classifier, chosen for its interpretability and 
effectiveness in binary classification tasks, yielded impressive results. However, exploring other classifiers such as 
Support Vector Machines (SVM) or ensemble methods (e.g., Random Forests or Gradient Boosting) could provide 
insights into further optimization. SVM, for example, may offer increased accuracy in cases with clearly defined margins 
between classes, while ensemble methods can improve robustness by combining predictions from multiple models. 

 

Figure 2 ROC curve of classification model 

4. Conclusion 

This study demonstrates the feasibility of a machine learning approach to detect Grasserie disease in silkworms, 
achieving over 90% accuracy with a decision tree classifier. By automating disease detection, our approach provides a 
reliable alternative to manual inspection, potentially increasing diagnostic speed and accuracy in sericulture. The use 
of LBP and PCA allowed us to reduce data complexity while retaining essential features for disease classification. Future 
research could explore expanding the dataset to include other silkworm varieties, environmental conditions, and 
additional image sources to ensure model generalizability. Ensemble models and deep learning approaches may also be 
explored to further enhance classification performance. 

Incorporating this model into a mobile application could enable field-based, real-time diagnostics, empowering 
sericulture practitioners with immediate feedback. This approach holds promise for wider applications in agriculture 
and veterinary sciences, where early disease detection can have substantial economic and ecological benefits. 
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