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Abstract 

Polycystic ovary syndrome (PCOS) has been classified as a severe health problem common among women globally. Early 
detection and treatment of PCOS reduce the possibility of long-term complications, such as increasing the chances of 
developing type 2 diabetes and gestational diabetes. Therefore, effective and early PCOS diagnosis will help the 
healthcare systems to reduce the disease’s problems and complications. Machine learning (ML) and ensemble learning 
have recently shown promising results in medical diagnostics. The main goal of our research is to provide model 
explanations to ensure efficiency, effectiveness, and trust in the developed model through local and global explanations. 
Feature selection methods with different types of SVM models are used to get optimal feature selection and best model. 
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1. Introduction

PCOS is the most common endocrine disorder in women of reproductive age [1]. PCOS is characterized by the ovaries 
production of an abnormal number of androgens which are male sex hormones that are normally present in women in 
small amounts. These androgens can cause more problems with the women’s menstrual cycle and’ are a reason of many 
PCOS features [2]. PCOS has many symptoms including irregular menstrual cycles, acne, heavy periods, excess hair 
growth, thickened and dark areas of skin, weight gain, pelvic pain, oily skin, and difficulty in getting pregnant. It is 
specified by hyperandrogenism, insulin resistance, anovulation where the ovary does not release an oocyte during the 
menstrual cycle, and neuroendocrine disruption [3–4]. 

PCOS diagnosis can be tricky, because not everyone with PCOS has polycystic ovaries (PCO), nor does everyone with 
ovarian cysts have PCOS, so the pelvic ultrasound as a standalone diagnosis is not sufficient [5]. The full diagnostic plan 
is mainly a combination of a pelvic ultrasound besides blood tests of specific parameters that indicate the presence of 
PCOS. PCOS can be diagnosed well in adults opposed to the diagnosis of adolescents where in this age group, the 
symptoms of the PCOS is overlapped with the characteristics of puberty. The diagnosis in adults is set by three distinct 
sets, one is determined by the National Institute of Health Consensus Statement which defines PCOS as menstrual 
irregularity and evidence of hyperandrogenism [6]. Another set is determined by the ESHR/ASRM where the PCOS is 
defined as two of three features including anovulation or oligo-ovulation, hyperandrogenism, and polycystic ovaries by 
ultrasound [7]. The third and final set is defined by the Androgen Excess and PCOS Society, that diagnose PCOS as 
hyperandrogenism with ovarian dysfunction of polycystic ovaries [8]. Although the PCOS diagnosis is determined by 
one of the three sets, it is still difficult to certainly diagnose it, one reason according to Dr. Darche is there is no universal 
definition of the condition, “There are multiple expert-derived criteria for the syndrome, which means there is no 
universal diagnostic test or algorithm that doctors used to assess patients” she said. The other reason is that symptoms 
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vary between women and does not affect them the same, this makes the diagnosis even more ambiguous for doctors. 
Furthermore, symptoms might not necessarily point to PCOS, but could be related to other endocrine issues, obesity, 
and hypothyroidism [9]. 

Since PCOS is a hard-to-diagnose widespread hormonal disorder, blood tests, symptoms, and other parameters with the 
help of a computer can form a new and easy method to diagnose it. By collecting clinical data and building a model by 
writing algorithms, Machine Learning has shown its efficiency in the health sector when it comes to diagnosing diseases 
accurately [10-15].  

2. Literature Review 

The authors applied ML models to PCOS from Kaggle to predict PCOS. For example, in [16], the authors applied gradient 
boosting, RF, LR, and a hybrid RFLR model that integrated RF with LR with a univariate feature selection (UFS) algorithm 
from the PCOS dataset. They split the dataset using holdout and cross-validation methods to train and test models. The 
result showed that RFLR with UFS achieved the highest performance. 

In [17], the authors reduced the number of features using Principal Component Analysis (PCA). They applied NB, KNN, 
LR, RF, and SVM with selected features to predict PCOS. The result showed that RF achieved the highest accuracy. In [6], 
the authors used correlation feature selection methodology to select a subset of features from the database. They 
applied different ML models: SVM, LR, RF, DT, KNN, Quadratic Discriminant Analysis (QDA), Linear Discriminant 
Analysis (LDA), GB, AdaBoost (AB), XGBoost (XB), and CatBoost, and obtained the optimal model based on correlation 
thresholds. The result showed that RF was the optimal model. 

In [18], the authors compared different models, i.e., CNN, ANN, SVM, DT, and KNN, and applied feature selection methods 
to diagnose PCOS. RF achieved the best-performing model. In [19], the authors utilized Pearson correlation to determine 
the best features. The applied SVM, RF, and XG boost multi-layer perceptron with selected features to detect the 
accuracy rate of their SVM have the highest rate. In [20], the authors proposed a hybrid feature selection approach using 
filters and wrappers to reduce the number of features. Furthermore, they applied different ML models with selected 
features to predict PCOS. SVM achieved the highest accuracy. 

In [21], they applied SVM, LR, NB, and KNN to detect whether a woman was suffering from PCOS. They used chi-square 
feature selection methods to select the top 30 features. The accuracy of RF has achieved the highest rate. In [16], the 
authors used RF, DT, SVM, LR, KNN, XGBRF, and CatBoost Classifier to detect whether a woman was suffering from 
PCOS. The result showed that CatBoost recorded the highest accuracy. 

In [22], the authors used Gini importance to select features. They applied different ML models: KNN, DT, SVM, LR, and 
NB, to detect PCOS. Based on the accuracy, DT recorded the highest rate. In [23], the authors applied CatBoost, RF, LR, 
NB, DT, SVM, and DT. Furthermore, they compared their outcomes in terms of the evaluation matrix. CatBoost has the 
highest accuracy in predicting whether a woman should seek medical help for PCOS. In [24], the authors applied Chi-
Square, ANOVA, and Mutual Information to identify insignificant features from the data. They used selected features to 
detect PCOS by applying SVM, LR, DT, NB, XGBRF, RF, and CatBoost. The CatBoost classifier performed with the best 
accuracy. 

In [25], the authors used ML models: LR, DT, RF, SVM, NB, KNN, AdaBoost, XGBoost, and Extratrees and DL and proposed 
multi-stacking ML to predict PCOS. They used Explainable AI (XAI) techniques to make model predictions 
understandable, interpretable, and trustworthy. The result showed that multi-stacking ML recorded the best 
performance. 

Logistic regression, K-Nearest Neighbor (KNN), Gaussian Naive Bayes, Random Forest Classifier, and Support Vector 
Machine (SVM) were used to identify polycystic ovary syndrome (PCOS) in [26].  

A random forest classifier, decision tree and random forest chi-square algorithms were used in [27] to find the highest 
accuracy for PCOS detection keeping 20% of the dataset for testing and the remaining for training for every iteration. 

3. Methodology 

We applied different ML models: SVM, NB, LR, KNN, RF, DT, XGboost, and AdaBoost, with FS methods to predict PCOS.  
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We used the PCOS dataset from Kaggle [26], which includes 541 instances and 41 attributes. There are 178 instances of 
the positive class (1) and 363 instances of the negative class (3). For the experiments, Python programing language is 
used as a machine learning tool. For this, Anaconda distribution package, Scikit-learn library, Jupiter notebook, Spyder, 
Orange, etc. are used for the deployment of Python. 

 

Figure 1 Work flow chart 

 

Figure 2 Features correlation 
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Figure 3 Pattern of weight gain (BMI) over years in PCOS and Normal. 

Body mass index (BMI) in fig. 3 is showing consistency for normal cases. Whereas for PCOS the BMI increases with age. 

 

Figure 4 Distribution of follicles in both ovaries. 

The distribution of follicles in fig. 4 in both ovaries Left and Right are not equal for women with PCOS in comparison 
with the "Normal" patient. 
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Figure 5 Feature Selection using Extra Trees Classifier 

 

Class imbalance {0: 'Negative', 1: 'Positive'} 
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Class balancing {0: 'Negative': 298, 1: 'Positive': 328} 

Figure 6 Class balancing 

Table 1 SVM Performance 

Model Class precision recall F1 score Accuracy 

Linear  0 0.94 0.88 0.91 0.90 

1 0.87 0.93 0.90 

RBF 0 0.84 0.94 0.89 0.87 

1 0.92 0.79 0.85  

Polynomial 0 0.82 0.96 0.88 0.86 

1 0.93 0.75 0.83  

  

   

Figure 7 Confusion matrix 

Figure 6 displays confusion matrices. True Positives and True Negatives are prominent in the Linear SVM matrix, 
confirming its strong predictive power for both PCOS-positive and negative classes. False Negatives are slightly higher 
in the RBF and Polynomial kernels, which might explain their lower F1 scores for the positive class. 
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4. Conclusion 

The Linear SVM model outperforms both the RBF and Polynomial kernels, achieving the highest overall accuracy of 
90%. For the Linear SVM, the F1 scores are 0.91 for class 0 (Negative) and 0.90 for class 1 (Positive), indicating a strong 
balance between precision and recall for both classes. Although the RBF and Polynomial SVMs shows good precision 
(particularly for the positive class), their recall values are lower, especially for class 1 (79% and 75% respectively), 
which affects the F1 scores. 
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