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Abstract 

As the volume and complexity of big data continue to escalate, optimizing the performance, scalability, and energy 
efficiency of big data applications within cloud data centers has become increasingly crucial. This journal presents a 
comprehensive survey of current optimization techniques, focusing on data placement, job scheduling, and network 
configurations tailored for cloud environments. We explore the impact of various data center topologies on the 
performance of big data frameworks like Hadoop, emphasizing the trade-offs between performance and energy 
efficiency. Advanced methodologies, including dynamic data placement strategies, locality-aware scheduling, and 
innovative reduce task placement techniques, are reviewed in depth. Additionally, we highlight the importance of 
network power effectiveness (NPE) and examine the role of optical and electronic switching technologies in enhancing 
data center efficiency. By synthesizing findings from recent studies, this paper provides valuable insights into the 
optimization of cloud data centers, offering recommendations for improving resource utilization and reducing job 
completion times while maintaining energy efficiency. The findings contribute to the ongoing efforts to scale and adapt 
cloud data infrastructures for the rapidly growing demands of big data applications. 

Keywords: Cloud Data Centers; Big Data Optimization; Hadoop Clusters; Job Scheduling Algorithms; Network 
Topology Efficiency 

1. Introduction

The big data landscape and the infrastructure for collecting, transferring and storing information is changing faster than 
ever [1]. As opposed to a traditional dataset, big data is unstructured and wherein produced rapidly for extended 
periods of time through user or device proliferation [2] & [3]. Most of these large workloads are taken care of in well-
equipped cloud data centers, which enable huge storage and computational power to address for real-time as well as 
batch processing [4] & [5]. Big data processing aims to process big and complex volumes of (structured/un- structured) 
queries based on the five V-model [6 7] comprising Volume, Velocity, Variety, Veracity and Value. Volume: refers to the 
enormous data sizes, which are usually quantified in exabytes or zettabytes [8] is shown in FIgure 1. 

Velocity indicates at which speed data is 'produced' and hence underlines that it loses its value quickly [9]. Variety deals 
with the many types of data, from structured [10]. Veracity whether the data is accurate and can be trusted or not Value 
[11] - [13]. Insights,inference that one can derive from the data. A global data volume of around 40,000 exabytes is 
expected to be recorded in the year 2020 and this gigantic amount will get accumulated as a progression across many 
applications generating large content attached with human activities [14] - [15]. It was expected that online business 
transactions would reach 450 billion per day in the year of 2020, and as social media platforms further enrich internet 
content by contributing several terabytes on a daily basis. Big Data mining is a key to understanding how users behave 
and what they want, enabling the next generation of innovations in psychology, economics & product development [16] 
- [18]. 
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Figure 1 Representation of 5 V models in Big Data 

To deal with the challenges of processing large datasets, a variety of technologies such as MapReduce has developed 
that delivers an efficient parallel computing model for distributed data. This has given rise to a variety of distributed 
programming solutions and cloud computing applications [19]. Large data applications involve almost every field, 
including earth sciences, astronomy where it combines with both archive and simulation/data-intensive scientific areas 
such as genomics or bio-informatics. Historically, such applications were supported by high-performance computing 
(HPC) clusters But cloud computing infrastructures are slowly but surely replacing existing systems in the face of 
datasets that have long surpassed what old technology can handle, sacrificing performance and cost along the way [20]. 
There is also Mobile Cloud Computing (MCC), where heavy computational and storage requirement applications can 
offload their processing tasks to the cloud. The approach allows data-rich services to be streamed in high video quality 
or played online games on a low-specced device. In addition, the internet of things (IoT) interconnects a large number 
of physical devices that help in uniting data collection and analysis within applications [21]. 

Realising the promise of big data needs joint efforts from many disciplines with heavy investment in improving 
infrastructures for data processing, management and analytics. This will require security, privacy and governance as 
big challenges when building a large scale- energy efficiency processing system. In this journal we present a survey of 
optimization strategies for cloud data centres and networks, including application-level, cloud networking-level as well 
as data centre level approaches to enhance the performance while improving resource utilisation and energy efficiency 
on big data applications.  

1.1. Data Placement Optimization in Hadoop Clusters  

Early research in optimizing data placement within Homogeneous Hadoop clusters focused on developing dynamic 
algorithms to distribute data fragments according to the processing capacities of individual nodes [22]. This strategy 
was designed to minimize data movement between over-utilized and under-utilized servers, which can enhance the 
overall efficiency of the cluster.  

However, a significant limitation of this approach was the lack of consideration for data replication. Replication is a 
critical aspect of ensuring high data availability across the cluster, but it also introduces energy inefficiency as it requires 
most nodes to remain active. Later studies addressed this issue by proposing methods to dynamically switch off unused 
nodes while ensuring that replicas of all data sets are maintained in a subset of nodes that are always active. While this 
approach effectively reduced energy consumption, it also resulted in increased job running times due to the reduced 
number of active nodes available for processing. 
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Figure 2 Hadoop Architecture [23] 

1.2. Balancing Performance and Energy Efficiency 

Optimizing the balance between performance and energy efficiency in dedicated MapReduce clusters has been a major 
focus of subsequent research. Dynamic sizing and locality-aware scheduling techniques were developed to handle 
diverse workloads, including batch MapReduce jobs, web applications, and interactive MapReduce jobs. By delaying 
batch workloads and carefully considering data locality and delay constraints for web and interactive workloads, these 
techniques achieved a balance between energy savings and job performance. For instance, energy savings of up to 59% 
were reported compared to static resource allocation strategies. Moreover, specialized algorithms like the Dependency 
Aware Locality for MapReduce (DALM) were introduced to process highly skewed and dependent input data. These 
algorithms significantly reduced cross-server traffic, with DALM achieving a reduction of up to 50%, thereby enhancing 
overall cluster performance [24] - [27]. 

1.3. Advanced Reduce Task Placement Techniques  

The placement of reduced tasks within Hadoop clusters has been another area of significant research. Traditional 
greedy approaches focused on maximizing intermediate data locality for current reduced tasks but often at the cost of 
performance in subsequent map tasks. To address this, more sophisticated methods were developed, including 
approaches that optimized reduce task placement while considering the impact on future map tasks. One such study 
achieved up to a 20% improvement in performance by balancing the needs of sequential MapReduce jobs. Additionally, 
efforts to improve query performance in Hadoop clusters led to the development of data block allocation strategies that 
utilized k-means clustering. This method co-located related data blocks within the same cluster, improving query 
performance by up to 25% and reducing overall job execution time [28]-[31]. 

1.4. Innovations in Job Scheduling 

Common default scheduling engines for hadoop like FIFO, capacity scheduler and HFS have not been sophisticated 
enough in dealing with mixed workloads, leading to suboptimal performance. A number of innovative scheduling 
algorithms spawned from research in this area has been developed to make the optimal use of resources, minimize job 
makespan and maximize energy efficiency. To alleviate the conflict between scheduling fairness and data locality, delay 
sched-uling was proposed. This reduced the trade-off with scheduling-to-maximize-data-locality and subsequently had 
high success rates in achieving perfect data locality while placing very few restrictions on overall job performance. Other 
scheduling innovations included. Resource-aware Adaptive Scheduling that dynamically changes device slots per 
machine based on job requirements and FLEX, which is a flexible allocation scheme for optimizing response time while 
meeting Service Level Agreements [32] - [35]. 
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1.5. Reducing Job Completion Times in Cloud Environments 

Reducing job completion time is a fundamental objective in designing cloud data centers for performance, and to meet 
Service Level Agreements (SLAs) in addition to minimizing power consumption. Many strategies have been derived, 
such as the Resource and Deadline-aware Hadoop scheduler (RDS), which uses online optimization to meet job 
deadlines on dynamically allocating resources in Hadoop clusters with self-learning completion time estimator. RDS has 
been very well received in environments where a combination of energy source and workload need to synchronously 
deliver deadline constrained jobs. Going a step further, the Bipartite Graph MapReduce scheduler (BGMRS), which 
specifically targeted clusters with heterogeneous nodes and fluctuating job execution durations, demonstrated an 
aggregated reduction of 79% in deadline miss ratios and 36% in total job completion times as compared to existing 
dynamic mapreduce schedulers. 

Other approaches like BEneath the Task Level (BeTL) have been proposed to tackle fault tolerance and skew mitigation 
respectively, achieving more on further improving Hadoop performance under failure conditions and skewed 
workloads. These approaches have demonstrated impressive reductions in job execution time; reducing up to 88.79% 
of the total runtime in memory-constrained environments [36] - [39]. 

2. Literature Survey 

Authors Methodology/Techniques Key Points 

Hedayati et 
al. [40] 

Systematic review of Hadoop 
MapReduce scheduling algorithms 

Categorized schedulers based on performance, proposed 
frameworks to enhance data locality, resource utilization, 
and fairness. 

Ahmed et al. 
[41] 

Comparative performance analysis of 
Hadoop and Spark using HiBench 

Spark outperformed Hadoop in memory-intensive tasks, 
while Hadoop was more efficient in disk I/O operations; 
benchmarked different workloads. 

Dokeroglu et 
al. [42] 

Optimizing Hadoop Hive performance by 
sharing scan and computation tasks 

Introduced query sharing to reduce redundant tasks, leading 
to performance improvements in Hadoop Hive. 

Lee et al. [43] Dynamic data placement strategy for 
Hadoop in heterogeneous environments 

Focused on load balancing and reducing data movement; 
proposed dynamic placement to match node capacities. 

Xiong et al. 
[44] 

Optimizing data placement in 
heterogeneous Hadoop clusters 

Suggested energy-efficient strategies for data placement to 
improve MapReduce performance and reduce cross-server 
traffic. 

Wu et al. [45] Energy-efficient Hadoop for big data 
analytics 

Proposed methods to reduce energy consumption in Hadoop 
clusters while maintaining high data availability. 

Ma et al. [46] Dependency Aware Locality for 
MapReduce (DALM) 

Reduced cross-server traffic by considering data 
dependencies during task scheduling in Hadoop. 

Zhao et al. 
[47] 

Improved data placement strategy in a 
heterogeneous Hadoop cluster 

Proposed a strategy to enhance fault tolerance and optimize 
data block placement to improve processing efficiency. 

Dokeroglu et 
al., [48] 

SharedHive: Optimizing Hadoop Hive 
performance through query sharing 

Improved performance by merging queries with similar 
operations; reduced MapReduce tasks and HDFS I/O. 

Mashayekhy 
et al., [49] 

Energy-Aware Scheduling of Hadoop 
MapReduce Jobs 

Focused on scheduling techniques that reduce energy 
consumption while maintaining performance in big data 
applications. 

Samadi et al. 
[50] 

Comparative analysis of Hadoop and 
Spark using HiBench benchmarks 

Benchmarked and compared Hadoop and Spark across 
various tasks, highlighting strengths and weaknesses in 
different workloads. 

Lee et al. [51] Data placement strategy for Hadoop in 
heterogeneous environments 

Developed dynamic algorithms for optimizing data 
placement based on node capacities, reducing data 
movement costs. 
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The reviewed literature reflects significant advancements in the optimization of Hadoop clusters, particularly in the 
areas of data placement, scheduling algorithms, and performance enhancement techniques. Initial research efforts, such 
as those by Lee et al. focused on dynamic data placement strategies tailored for heterogeneous Hadoop environments. 
These methods aimed to optimize load balancing and minimize data movement by aligning data distribution with the 
processing capacities of individual nodes. However, the heterogeneous nature of these environments posed challenges 
in maintaining consistent performance levels. To mitigate these issues, Wu et al. introduced energy-efficient data 
placement strategies that not only reduced energy consumption but also ensured high data availability across the 
cluster, thereby addressing the trade-off between energy efficiency and data redundancy. 

In the realm of scheduling, significant advancements have been made to enhance resource utilization and job 
performance. Zhao et al. provided a systematic review of Hadoop MapReduce scheduling algorithms, categorizing them 
based on their impact on performance metrics such as data locality, resource utilization, and fairness. Additionally, 
query optimization techniques, such as those explored by Dokeroglu et al. focused on enhancing Hadoop Hive 
performance through shared computation tasks, effectively reducing redundant MapReduce operations. These 
technological developments collectively contribute to the ongoing efforts to improve the scalability, efficiency, and 
adaptability of Hadoop clusters in managing complex and diverse data processing workloads. The optimization of big 
data applications within data centers has become increasingly critical as the volume and complexity of data continue to 
grow. This section summarizes various studies focused on enhancing the performance, scalability, flexibility, and energy 
efficiency of big data applications, specifically in relation to their hosting data centers. The studies are categorized based 
on their approach to improving data center design, routing protocols, and job scheduling to optimize the overall 
performance of big data infrastructures. 

2.1. Performance and Energy Efficiency in Data Center Topologies 

Several studies have evaluated the impact of different data center topologies on the performance and energy efficiency 
of big data applications. Data center Network Topology is shown in Figure 3. The authors in [52]-[53] conducted 
comprehensive analyses using various models and simulators to assess how network configurations influence Hadoop 
clusters. Modeled Hadoop clusters with a topology of up to four ToR switches and a core switch, finding that Hadoop 
scales effectively across nine different configurations. Similarly, [205] used the MRPerf simulator to study how data 
center topology affects Hadoop’s performance, considering factors like CPU, RAM, disk resources, and data placement. 
A significant finding was that the DCell topology improved sorting performance by 99% compared to double-rack 
clusters. Further studies [54]-[55] extended this work by examining different data center topologies and switching 
technologies. The CloudSimExMapReduce simulator in [55] compared several topologies, with CamCube showing 
superior performance, particularly in handling intermediate data shuffling. The study in [56] highlighted that optical 
switching technologies could reduce power consumption by 54% compared to electronic switches, while maintaining 
comparable performance. 

 

Figure 3 Datacenter Network Topology [58] 

Additionally, research in [57] introduced the concept of Network Power Effectiveness (NPE), evaluating different 
electronic switching topologies under various routing protocols. The study found that topologies like FBFLY achieved 
the highest NPE, particularly when considering server-centric designs. 
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2.2. Enhancing Big Data Applications in Data Centers 

As big data grows even bigger, and more complex in its use of the infrastructure beneath it, maintaining performance 
optimization to applications running at data center scale is critical. Introduction This section gives an introductory 
documentary on a few important original research and surveys related to optimising the data centre design, routing 
protocols as well as job scheduling for better performance of big data infrastructures. 

2.3. Evaluating Data Center Topologies for Optimal Performance and Efficiency 

Several studies investigated how different topologies of data centers have an influence on performance and energy 
efficiency in dealing with big data applications. Several studies [59]–[60], employed various models and simulators to 
evaluate the performance implications of network configurations in Hadoop clusters. A Hadoop clusters of up to four 
ToR switches and a core switch came across the fact that recurrence networks scaled well in case they were different 
through a sum of nine configurations. [61] also used the MRPerf simulator but they consider a slightly larger model and 
focus on how data center topology affects performance of Hadoop, including CPU, RAM disk resources as well is 
concerning with which nodes will be storing chunks or files. This brings us to the DCell topology, which improved sort 
performance 99.4% over double-rack clusters. Authors in [62] use Cloud SimEx MapReduce simulator to show 
comparison of various topologies and CamCube providing good results specifically for intermediate data shuffling jobs. 
Also the work in [63] pointed out that optical switching technologies could cut power consumption by 54%, compared 
with conventional electronic switches but provide equivalent levels of efficiency. 

2.4. Network Power Effectiveness and Topology Optimization 

Building on these analyses, research in [64] introduced the concept of Network Power Effectiveness (NPE), which 
evaluates different electronic switching topologies under varying routing protocols. The study identified that topologies 
like FBFLY achieved the highest NPE, especially when focusing on server-centric designs. It also examined the impact 
of design choices such as link speeds and oversubscription ratios on performance, revealing that specific configurations 
could significantly influence the energy efficiency and scalability of data center operations. These studies collectively 
contribute to a deeper understanding of how data center topology and network configurations can be optimized to 
enhance the performance and energy efficiency of big data applications  

3. Conclusion 

As big data continues to expand in both volume and complexity, optimizing cloud data centers has become increasingly 
critical. This paper has examined key optimization strategies, focusing on data placement, job scheduling, and network 
topology enhancements within cloud environments, particularly in Hadoop clusters. Dynamic data placement strategies 
have proven essential for balancing load distribution and minimizing data movement within heterogeneous clusters. 
However, these strategies face challenges in maintaining energy efficiency without compromising performance. 
Advanced job scheduling algorithms, such as locality-aware scheduling and dynamic resource allocation, have shown 
significant potential in reducing job completion times and improving resource utilization, particularly in environments 
with diverse workloads. 

Innovative network topologies, including the integration of optical networking technologies, have been identified as 
crucial for achieving substantial energy savings and reducing latency in data center operations. Despite these 
advancements, several challenges persist. Balancing energy efficiency with high performance remains a key area of 
focus, and there is a need for more sophisticated algorithms capable of real-time adaptation to fluctuating workloads 
and data center conditions. Furthermore, the integration of next-generation technologies aimed at further reducing 
energy consumption without sacrificing computational performance is crucial. Security, privacy, and governance also 
need to be addressed in the ongoing evolution of cloud data center optimization strategies 
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