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Abstract 

This research develops and examines the efficacy of a hybrid ARIMA-GARCH model, augmented by a rolling data window 
approach, to enhance the accuracy of stock index prediction, specifically focusing on the NEPSE index. Accurate 
predictions of stock indices are of paramount importance to investors, analysts and policy makers to navigate and 
circumvent the market uncertainties. The AutoRegressive Integrated Moving Average (ARIMA) model captures linear 
trends and temporal dependencies in time series data, while the General AutoRegressive Conditional Heteroskedasticity 
(GARCH) model addresses volatility clustering—ubiquitous character of financial time series—thereby providing a 
comprehensive framework for prediction. Utilizing a dataset comprised of daily closing points of NEPSE index 
approximately three years and nine months, the study identifies the ARIMA (5,1,0)-GARCH (1,1) model as optimal fit, 
upon integrating 180-day rolling data window. This model achieved a Mean Percentage Error of -0.0058% and a 
correlation of 0.995, which is indicative of superior fit to the underlying time series data. These findings underscore the 
hybrid model’s capacity to adaptively respond to dynamic market conditions and acclimatize prediction parallel to most 
recent market trends and volatility. This research is useful for optimizing investment strategies for those invested in 
Nepalese stocks. Also, this research lays a foundational framework for future investigations into application of this 
advanced forecasting method in other emerging markets, financial instruments and indices. 
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1. Introduction

Stock market forecasting plays a crucial role in financial decision-making, setting strategies for trading or investing, and 
even policy making. Accurate predictions of indices allow market participants assess the future vicissitudes of the 
market such that participants get the privilege to make informed decision. Forecast models are useful in simulating 
scenarios, stress testing and many more. With the evolving factors influencing market, a robust model is always desired 
to reduce the uncertainty of market movements. Forecast models has utility for investors to optimize investment 
portfolios, for financial analysts to develop strategic insights and to time market entry and exit points, for policy makers 
to anticipate market volatility on broader economic variables such as inflation, employment and economic growth, 
contributing to their effort to ensure market stability. Forecasting stock prices present several intrinsic challenges, 
primarily posed by volatility, market fluctuations and exogenous factors. Notably, NEPSE (Nepal Stock Exchange)—
major focus of this research—went through exogenous shocks such as Gorkha Earthquake, 2016 and covid-19 
pandemic, 2020. But Karki D. suggests that Nepalese market is semi-strongly inefficient on premise that these factors 
didn’t impact didn’t impact the returns of the market. Further making this research more awaited. [1] Unpredictability 
of variables, coupled with frequent periods of high and low volatility, complicates the task of making accurate price 
forecasts. In context of Nepal, NEPSE index is indicative of multiple broader economic variables due to its significant 
correlation with monetary variable. [2] NEPSE has been serving as barometer of nation’s financial health since January 
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13, 1994, tracking people’s confidence in some of nation’s great corporations.[3] NEPSE commenced with base value of 
100 from the very date and has since been calculated with the following formula: [3] 

𝑁𝐸𝑃𝑆𝐸 𝐼𝑛𝑑𝑒𝑥 =  
∑(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠)

∑(𝐵𝑎𝑠𝑒 𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠)
× 100 

Where, 
Current Market Capitalization = Price of the stock × Number of shares outstanding (for each company). 
Base Market Capitalization is the market capitalization at the base period (when the index was started). 
Base Index Value is typically set at 100 when the index is first established. 

1.1. Time Series Models for Stock Price Forecasting 

One of the hottest areas of research right now is time series data forecasting techniques. Time series data are being 
produced in an increasing number of fields. It encourages the advancement of time series research and supplies data 
for the study of the time series analysis method. The creation of large-scale, intricate time series data makes it more 
difficult to create forecasting models for time series data. High time series data complexity, weak prediction model 
generalization capabilities, and low accuracy are the primary obstacles to time series modeling. One of the hottest areas 
of research right now is time series data forecasting techniques. Time series data are being produced in a growing 
number of disciplines. [4] They capture patterns and trends using historical data. By modeling temporal dependencies 
and recurring behavior in data, time series techniques offer structured approach for forecasting dynamic environments. 
For accurate stock price forecasts, traditional econometric models have been set aside in favor of the ARCH model 
proposed by Engle in 1982. [5] 

1.1.1. ARIMA Model for Linear Patterns 

Among these models, the ARIMA (AutoRegressive Integrated Moving Average) model is widely used for handling linear 
trends in time series. ARIMA identifies and models the autocorrelations within the data, making it suitable for datasets 
where past price movements can inform future predictions. It stabilizes non-stationary data through differencing, 
enhancing its applicability in financial time series. [6] 

∅𝑝(𝐿)(1 − 𝐿)𝑑𝑦𝑡 = 𝜃𝑞(𝐿)𝜖𝑡 

Where: 
∅𝑝(𝐿) represents the autoregressive (AR) part with p lags.  

𝜃𝑞(𝐿) represents the moving average (MA) part with q lags.  

L is the lag operator: 𝐿𝑘𝑦𝑡 = 𝑦𝑡−𝑘 . 
D is the order of differencing to make the time series stationary.  
𝑦𝑡 is the time series at time t.  
∈𝑡 is white noise (error term) 

1.1.2. GARH Model for Volatility Clustering 

However, stock prices also exhibit volatility clustering, where periods of high volatility are followed by high volatility 
and low volatility follows low. This behavior is captured by the GARCH (Generalized AutoRegressive Conditional 
Heteroskedasticity) model, which extends the ARIMA model by modeling the variance of the errors. [7] 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

Where: 
𝜎𝑡

2 is the conditional variance (volatility) at time t.  
𝛼0 is a constant term.  
𝛼𝑖𝜖𝑡−𝑖

2  captures the ARCH terms (impact of past squared residuals) 
𝛽𝑗𝜎𝑡−𝑗

2  captures the GARCH terms (impact of past variances) 

P is the number of lagged variances (GARCH terms) 
Q is the number of lagged squared residuals (ARCH terms) 
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1.1.3. ARIMA-GARCH Hybrid Model 

ARIMA-GARCH is a combination which combined linear time series ARIMA with GARCH conditional variance. We call 
this the conditional mean and conditional variance model. To suggest a hybrid ARIMA-GARCH model, two steps need to 
be taken. The non-linear portion of the data is contained in the residuals of the linear model, which is initially fitted 
using the best ARIMA model on stationary and linear time series data. We employ the GARCH model in the second stage 
to capture patterns of non-linear residuals. This hybrid model is used to forecast and analyze oil price returns, stock 
prices, forex rates and many more. It incorporates the nonlinear residuals patterns of the GARCH and ARIMA models. 
To suggest a hybrid ARIMA-GARCH model, two steps need to be taken. The residuals of the linear model, which is first 
fitted using the best ARIMA model on stationary and linear time series data, contain the non-linear fraction of the data. 
In the second stage, we use the GARCH model to capture non-linear residual patterns. The financial time series future 
data points are forecasted and analyzed using this hybrid model. It integrates the GARCH and ARIMA models' nonlinear 
residuals patterns. [8] 

1.2. Rolling Data Window for Model Optimization 

A rolling data window is a technique in time series forecasting where a fixed-sized subset of historical data is used for 
model training, and this subset is continually updated as new data points become available. Unlike static dataset, rolling 
window uses data by shifting forward with each iteration. This allows the model to adapt to changing market conditions. 
Zivot et al. suggest that the economic environment often changes considerably, and it may not be reasonable to assume 
that a model’s parameters are constant and a common technique to assess the constancy of a model’s parameters is to 
compute parameter estimates over a rolling window of a fixed size through the sample. [9] They express that if the 
parameters are truly constant over the entire sample, then the estimates over the rolling windows should not be too 
different. Also, successes of use of rolling data window in diverse time series prompts this paper to use rolling data 
window. [9] 

1.3. Overview of Preceding Studies and Research Gaps 

There is a substantial body of research exploring stock price prediction realm, providing impeccable edifice for 
theoretical foundation and empirical evidence. Li documented a complete stepwise analysis process of financial time 
series using stock prices of Jinnan Hi-Tech Development. [7] YANG et al. worked on ARCH model and fitted the intraday 
high-frequency trading data of China National Trade stocks; they discovered higher accuracy of confidence intervals 
compared to traditional econometric model. ARCH has multiple extended models including GARCH, EGARCH, FIGARCH 
and many more. YANG et al. suggested that utilizing one of these would improve accuracy of the results. [5] Pahlavani 
et al. compared the forecasting performance of the ARIMA model and ARIMA-GARCH models by using daily data of the 
Iran’s exchange rate against the U.S. Dollar (IRR/USD) for over a year; they found ARIMA- ((7,11,12),(4)-GARCH (2,0) 
to be the best fit model, using AIC and BIC. [10] Dritsaki used ARIMA-GARCH model in Forecasting Oil Prices and tested 
its performance. [8] 

The major research gap is the use of rolling data window. So, this paper focuses on identifying, implementing and testing 
efficacy of AIRMA-GARCH model, using a rolling window of 180-days data points, on a stock index of an emerging market 
economy.  

1.4. Rationale and Objective of the Study 

The rationale for combining ARIMA and GARCH models lies in the need to capture both the linear patterns and volatility 
dynamics intrinsic to stock market data. In hybrid model, one like ARIMA-GARCH, the ARIMA is effective with linear 
structure of time series, capturing trends and seasonality, while the GARCH model is well-suited for addressing volatility 
clustering. [10] Given that the NEPSE index exhibits such characteristics, a hybrid ARIMA-GARCH model offers a more 
comprehensive framework for forecasting closing prices, accounting for both price movement trends and volatility 
spikes. And rolling data window makes the analysis efficient as it adapts continuously with the most recent data. [9] 
This dynamic approach helps model remain relevant and responsive over time. The paper’s methodology could be 
highly relevant to underdeveloped and emerging stock markets (one like NEPSE) that experience high volatility and 
market inefficiencies, as this hybrid model is robust to capture non-stationary data and volatility dynamics of the 
market. [1] 

The primary objective of this research is to evaluate the efficacy of the ARIMA-GARCH hybrid model in predicting NEPSE 
index closing prices using a rolling data window approach. The study aims to assess the accuracy of the forecasts and 
demonstrate how this method improves prediction performance compared to static models. This research also aims to 
lay groundwork for future investigations of similar emerging market indices using this hybrid modeling technique. So, 
this research is hoped to enhance portfolio optimization and informed decision making for investors in real time.  
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1.5. Structure of the Paper 

This paper is organized as follows: The Materials and Methods section outlines the dataset, data pre-processing, and 
the ARIMA-GARCH model used for forecasting. The Results and Discussion section presents the model fitting results 
and forecasted data, along with an analysis of accuracy and discussion on each results. Finally, the Conclusion 
summarizes the key insights and offers recommendations for future research and applications in stock market 
forecasting. 

2. Materials and Methods  

2.1. Data collection 

The primary dataset used in this study consists of daily closing prices of the NEPSE index. Data is sourced from publicly 
available records of the Nepal Stock Exchange (NEPSE) and covers a time period of about 3 years and 9 months 
beginning from January 1, 2020 to September 29, 2024.  

2.2. Data Pre-processing 

Prior to modeling, the data was subjected to several preprocessing steps. Firstly, the data set was examined for missing 
entries. Then, z-score analysis was done with rolling data window of 180 data points. Finally, the Augmented Dickey-
Fuller (ADF) test was conducted to assess the stationarity of the time series. The non-stationary series was transformed 
using first-order differencing to achieve stationarity, as indicated by the ADF test results.  

2.3. Model Specification 

Stepwise Akaike Information Criterion(AIC) minimization procedure was endured to estimate the best fit model for 
forecasting. Data is subjected to split into training and test samples; then, the order of ARIMA model is determined. 
ARIMA residuals are tested for ARCH effect using Lagrange Multiplier Test (LM Test). Upon finding ARCH effects in 
ARIMA residuals, parameters of the GARCH model is determined.  

2.4. Rolling Window Approach 

A rolling window technique was implemented to enhance the model’s adaptability to evolving market conditions. A 180 
data points window was utilized, wherein the model is trained on the most recent 180 data points to forecast the next 
closing price. Iterative forecasting acclimatizes to shifting market conditions, updating the data points with each new 
data point to ensure forecasts incorporate the latest market trends.  

2.5. Model Evaluation  

The model’s performance was assessed through residual analysis: post modeling, residuals are analyzed to detect any 
remaining autocorrelation or patterns, using tools like the Ljung-Box test, QQ plots, ACF and PCF, etc. Finally, the 
accuracy of the model is assessed using statistical measures including Mean Percentage Error, Root Mean Squared Error, 
correlation, etc.  

By using these materials and these methodologies, the study aims to estimate a reliable model for forecasting NEPSE 
index’s closing points. 

3. Results and Discussion  

Following the methodologies as aforementioned, this paper endures the following steps in order to perform data 
analysis and visualization. 

3.1. Data Pre-Processing 

Data pre-processing is an important step in the data mining process, which refers to the cleaning, transforming and 
integrating of data in order to make it ready for analysis. Firstly, this paper has assured that no data point is missing, 
there are no significant outliers, and duplicates. Since, data was taken from single source, there is no requirement for 
integrating data. As we are dealing with time series data, for further analysis, we need to assure that data is stationary 
or stabilize. This paper does stationarity tests and differencing to stabilized the data. 
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3.1.1. Stationarity Test on Original Series 

Stationarity is a fundamental concept in time series data analysis that refers to the consistency of statistical properties 
of time series data over time. Particularly, a time series data is said to be stationary if its key characteristics—mean, 
variance, and auto-covariance—do not change with time. [7] 

To test the stationarity, the ADF (Augmented Dickey-Fuller) test is conducted on the time series data. After analysis the 
results depicted in Figure 1 is obtained.  

 

Figure 1 ADF Test on Closing Points of NEPSE Index on Original Time Series Data 

Since p-value > 0.05, the alternative hypothesis of the stationarity of data cannot be proven; time-series is not stationary. 
[7] 

3.1.2. First Order Differencing Followed by Stationarity  

To achieve stationarity, a differencing method must be used to eliminate unit roots. Thus, this paper performs first-
order differencing on the original series, and is subjected to the same ADF test. The result is showcased in Figure 2. [7] 

 

Figure 2 ADF Test on closing prices after first order differencing 

Since p-value < 0.05, the alternative hypothesis of stationarity of series is proven.  

3.2. Time Series Modeling 

3.2.1. Model Parameter Identification and Order Determination 

The Akaike Information Criterion (AIC) is a widely used measure for model selection in statistical modeling, especially 
in time series analysis and regression. A stepwise search to minimize AIC is conducted as ARIMA model with minimum 
AIC is considered the best model. [11] 

The AIC is defined as: 

AIC = 2k – 2 ln (L) 

Where, 

k is number of parameters in the model. L is the likelihood of the model given the data. 
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Figure 3 Performing stepwise search to minimize AIC 

The best model established as per the AIC minimization is ARIMA (5,1,0) model. ARIMA(5,1,0) is a model that uses 5 
lagged values of the time series to predict its current value, applies first order differencing to stabilize the mean of the 
series, and does not include any lagged forecast error terms.  

3.2.2. Testing for ARCH Effects    

ARCH effect is tested using Lagrange Multiplier Test 

 

Figure 4 Testing for ARCH effects using Lagrange Multiplier Test 

From the Figure, P-value = 0.0453: Since this p-value is below 0.05, we can reject the null hypothesis of no ARCH effects 
at the 5% significance level. GARCH(1,2) has the smallest AIC values but the difference compared to GARCH(1,1) is 
insignificant. Moreover, having a higher number or parameters in GARCH model results in instability in the model. This 
article proceeds with GARCH(1,1). [7] 

Most financial time-series use GARCH(1,1), which has one lag each in both ARCH and GARCH terms. It models volatility 
clustering, where large changes in asset prices are followed by large changes (high volatility), and small changes are 
followed by small changes (low volatility). Notably, this model strikes a balance between model complexity and fit; more 
complex GARCH models (with higher lags) may overfit the data, while GARCH(1,1) is usually sufficient for many 
applications.  
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3.2.3. Model Fitting Results 

This paper fitted the ARIMA(5,1,0)-GARCH(1,1) model and the following parameters is estimated as shown in Figure. 
For all the coefficients, the P-value is less than 0.001. (NaN implies substantially small value). 

 

Figure 5 ARIMA and GARCH Model Summary 

The ARIMA(5, 1, 0) model exhibits statistically significant autoregressive terms and shows promising results. 
Specifically, the first three autoregressive lags (ar.L1, ar.L2, and ar.L3) are statistically significant at the 0.05 level, 
indicating that past values have a notable impact on future prices. Notably, ar.L1 has a positive coefficient; this implies 
past price increments influence future prince increments. Conversely, arL2 has negative coefficient of -0.068, depicting 
market characteristics of correcting after an upward movement. The positive coefficient for ar.L3 (0.1349) suggests 
significance of momentum in price movement. Lack of significance of ar.L4 and ar.L5 raises question about inclusion of 
these terms in our model. While model selection is based on the edifice of AIC and BIC, there is always weighed trade-
off between model complexity and interpretability during model selection.  

The diagnostic tests conducted on the residuals present mixed picture. The Ljung-Box test indicates that model has no 
significant autocorrelation in residuals (p-value= 0.00), suggesting that the ARIMA model has captured the 
autocorrelation structure of the data. For normality test, the Jarque-Bera test (p-value=0.12), which indicates that the 
residuals are normally distributed. Both autocorrelation and normally tests are further explored in section 3.2.4 with 
visualizations. The Heteroskedasticity (p-value = 0.07), which is very close to conventional significance level of 0.05, 
indicates model may have slightly been unable to accommodate heteroscedasticity, but following ARIMA model, we 
have implemented General AutoRegressive Conditional Heteroskedasticity (GARCH) model in combination, which 
accommodates heteroscedasticity. Skewness value is not of significant concern as skewness is relatively small. However, 
it does indicate that the residuals deviate slightly from normality. If skewness is pronounced, it could suggest that the 
model might benefit from transformations (e.g., log or square root) to normalize the residuals. Since, it is at satisfactory 
level, we do not consider performing further transformations. Kurtosis of 3.29 suggests slight leptokurtic 
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characteristics, suggesting a distribution that has somewhat heavier tails and sharper peak than a normal distribution. 
This value is satisfactory, as it does not signal extreme deviations from normality. Overall, further transformations are 
not necessary; most of the parameters are at satisfactory levels.  

Following the ARIMA analysis, a GARCH model was applied to address the volatility clustering observed in the closing 
prices. The results indicate that the mean model’s constant term (mu = -2.3780) is significant, suggesting a stable mean 
return. The GARCH model results reveal that the parameters omega (89.0972), alpha[1] (0.1810), and beta[1] (0.7430) 
are all statistically significant, with their values indicating a strong relationship between past volatility and future price 
behavior. 

The parameter omega reflects the baseline level of volatility, while alpha[1] captures the effect of past shocks on current 
volatility. The significant positive coefficient for alpha[1] suggests that positive price shocks tend to increase future 
volatility, which is consistent with the phenomenon of volatility clustering seen in financial markets. The parameter 
beta[1] indicates that the impact of past volatility decays over time; however, since alpha[1] + beta[1] = 0.924, the sum 
being less than one suggests that the GARCH process is stationary. This is an important finding, as it implies that shocks 
to volatility will eventually dissipate. 

3.2.4. Visualizing Residual Autocorrelation and Normality Test 

The ARIMA-GARCH model upon being subjected to tests for residual auto-correlation and impedance. 

Performing Ljung-Box Tet to check if there exist auto-correlation in residuals. The results in figure depicts p-value 
whereby we cannot reject the null hypothesis. Hence, there is no auto-correlation among the residuals. 

 

Figure 6 Results of Ljung-Box Test 

Again, the autocorrelations can be tested by Auto Correlation Function (ACF) and Partial Auto Correlation function 
(PACF). Both of them satisfy the autocorrelation tests too. [7][8] 

 

Figure 7 Visualization of ACF and PACF 

Further, the model residuals data is subjected to QQ plot for Normality test. The residuals satisfy for normality test. 
[7][8] 
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Figure 8 QQ plot of model's residuals 

3.3. Forecasting and Accuracy Analysis 

The data model is now subjected to forecasting. Now the process is iteratively implemented to 180 points data window. 
The iterative forecasting approach adopted in this study, utilizing 180-day rolling data-window, offers advantages in 
enhancing the model’s performance. Unlike static models that rely on a fixed dataset, this model is adaptive to evolving 
dataset with newer trends and shift in volatility. [9] Also ARIMA model is a linear model, its performance is at its peak 
if the data progresses linearly, which is seen in small data-window.  

3.3.1. Forecasted Data Visualization 

The training data, actual data and forecasted data are juxtaposed in the Figure 9. The forecasting is done iteratively 
using most recent 180-days data window.  

 

Figure 9 Visualization of training data, actual data and forecasted data 

The forecasted values (dashed red line) closely follow the actual closing prices (green line) post 2021, indicating that 
the ARIMA-GARCH model effectively captures the underlying data patterns. The erratic movements post-2021 highlight 
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periods of high volatility, which the model appears to account for. The minimal divergence from actual data depicts the 
reliability of the model in forecasting future prices.  

3.3.2. Accuracy Evaluation 

Accuracy assessment illustrated in Figure 10 depicts that the model’s forecasted values exhibit -0.0058% Mean 
Percentage Error and correlation of 0.995, which depicts that the model fits the time series. Mean Error(ME) of -0.31 
indicates a slight negative bias in the forecasts, meaning that on average, the model slightly underpredicts the actual 
values. Root Mean Squared Error (RMSE) of 35.44 and Mean Absolute Error (MAE) suggests quite accurate prediction 
considering that average index value is 2160 (approx.) Inferences from the tests imply that the trained ARIMA-GARCH 
model is capable of forecasting the closing-points of the NEPSE index with fairly high degree of accuracy.  

 

Figure 10 Results of accuracy testing using different statistical measures 

3.4. Limitations and Future Directions 

Despite the informative results, several limitations warrant consideration. The slight departure (though, from QQ plots, 
normality of data is satisfactory) from normality in the residuals of the ARIMA model suggests that there is slight 
possibility of additional factors influencing price movements that are not captured by the current model specifications. 
Future research could explore alternative specifications, such as the incorporation of exogenous variables (ARIMAX) or 
seasonal effects (SARIMA), to enhance model robustness. 

Moreover, despite the fact that the GARCH model addresses volatility clustering, it assumes that the conditional variance 
follows a specific functional form. Future studies can investigate the efficacy of different volatility models, like EGARCH 
or GJR-GARCH, which has possibility to better capture asymmetries in a volatile series. 

4. Conclusion 

The implemented ARIMA-GARCH model fits the time series data of the closing points of NEPSE index, and it forecasts 
the next closing prices with fairly high accuracy, as depicted by the error analysis in Figure. ARIMA-GARCH model has 
high accuracy for linearly progressing data and it is highly precise for short-term forecasting. A rolling data window in 
forecasting can continuously acclimatize to the evolving vicissitudes of the market. Also, it is crucial to weigh the trade-
off between model complexity and interpretability. That said, there could be some stark incident of some parameters 
departing from expectations even when the model fits the most. It should always be considered, though, that there 
should be no autocorrelation in the residuals for model to capture most of the characteristics of a time series data. 
Similar approach can be endured in order to implement forecast model in other stock indices or stock prices. 
Specifically, this methodology is useful in forecasting stock prices in other emerging markets that experience similar 
economic environment alike to NEPSE.  
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