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Abstract 

Software defects and quality assurance are crucial aspects of software development that should be considered during 
the software development cycle. To ensure high-quality software, it is essential to have a robust quality assurance 
process in place. System reliability and quality are very key components that must be considered during software 
development, and this can only be achieved when software undergoes a thorough test process for errors, anomalies, 
defects, omissions, and bugs. Early software defect prediction and detection play an essential role in ensuring the 
reliability and quality of software systems, ensuring that software companies discover errors or defects early enough 
and allocate more resources to defect-prone modules. This study proposes the development of an enhanced classifier 
model for software defect prediction and detection. The aim is to harness the collective intelligence of selected base 
classifiers like Support Vector Machine, Logistic regression, Decision Trees, Random Forest, AdaBoost, Gradient 
Boosting, K-Nearest Neighbor, GaussianNB, and Multi-Layer Perception to improve accuracy, robustness, and 
generalization in identifying potential defects using a soft voting ensemble technique. The ensemble model leveraged 
the confidence probability of the soft voting technique and the generalization advantage of cross-validation leading to 
a more robust and dynamic model. The performance of the model with existing classifiers was evaluated using accuracy, 
F1 score, Precision, and area under the ROC curve (ROC- AUC) as the evaluation metrics. The results of the experiment 
revealed that the Proposed Classifier produced an overall Accuracy rate of 93%, and ROC AUC of 98%. The results 
demonstrate the effectiveness of our enhanced ensemble classifier in software defect detection and prediction. By 
harnessing the strengths of diverse base classifiers, our approach provides a robust and adaptive solution to the 
challenges of early detection and mitigating defects in software systems. This research contributes to the advancement 
of reliable software development practices and lays the foundation for future enhancements in ensemble-based defect 
detection methodologies. 
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1. Introduction

Software defects and quality assurance are crucial aspects of software development that should be considered during 
the software development cycle as they ensure the release of reliable, efficient, and high-performing software products 
[1]. To ensure high-quality software, it is essential to have a robust quality assurance process in place. These processes 
involve code reviews, testing, and inspections to identify and eliminate defects before the software is released to the 
end-users [2]. 
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In a study by Alsawalqah et al [3], they acknowledged software defect prediction as a reliable approach towards early 
and timely identification of error-prone modules of software before the software undergoes the testing process and this 
is capable of helping software developers allocate appropriate resources to the affected module. One of the objectives 
of this research is to develop a software defect prediction and detection model. This study looks to achieve this through 
the deployment of machine learning models to help detect and predict software defects. 

Software quality is an error-free product that produces predictable results and can be delivered within time and cost 
constraints [4]. As a result, it is very important to have appropriate approaches to develop high-quality software that 
can meet the increasing needs in today's business world. Past studies suggest that no single defect detection technology 
can solve all types of defect detection problems. 

According to Saheed et al.[5] most of the research on machine learning methods for identifying software defects 
performed poorly in terms of prediction accuracy and other performance indicators. Many of these studies just looked 
at accuracy, which is insufficient to gauge how well SDP is performing. As a result, they suggested a machine-learning 
model for SDP that has seven ensembles. 

So, this study focuses on enhancing the effectiveness and efficiency of the defect detection model’s accuracy. 

However, achieving high accuracy in defect detection models with less misclassified data remains a challenging task. 
Ensemble methods and Cross-validation Techniques when combined have shown promising results in improving a 
model's performance. This article explores the combination of ensemble methods and cross-validation techniques to 
enhance software defect detection accuracy. 

Commonly used strategies for model enhancements include Ensemble methods, cross-validation, Feature engineering, 
Transfer learning, and more. This research seeks to combine two of these strategies to produce a more efficient 
classification model for software defect detection. 

 Regression and classification strategies are mostly suitable for defect detection. The objective of regression techniques 
is to predict the number of software defects [6] while the classification approach aims to decide whether a software 
module is faulty or not. Classification models can be trained from the defect data of the previous version of the same 
software. The trained models can then be used to predict further potential software defects. 

1.1. Ensemble Techniques 

In the realm of software defect prediction and detection, ensemble approaches have attracted a lot of interest. Numerous 
studies, such as that of Matloob et al. [7], have emphasized the importance of considering multiple models and ensemble 
approaches in bug prediction tasks. These studies also demonstrate that by combining the predictions of diverse 
models, an ensemble can improve bug prediction performance by leveraging their strengths and mitigating their 
weaknesses. 

The efficacy of an ensemble classifier over single classifiers was established by Gupta et al. [8] in their research on the 
usefulness of ensemble classifiers over cutting-edge machine learning classifiers for predicting software errors in 
software modules. They used an ensemble classifier to test against cutting-edge classifiers such as J4, Random forests, 
Decision tables, and Naïve Bayes. Their findings showed that the ensemble classifier produced superior outcomes than 
solo classifiers. 

One of the key advantages of ensemble learning in software defect prediction is its ability to mitigate overfitting. 
Overfitting occurs when a model learns the noise in the training data, resulting in poor generalization to unseen data 
[9]. Ensemble learning, by combining diverse models, can reduce overfitting by capturing different patterns in the data. 
Each base model may overfit to a certain extent, but the combination tends to produce a more generalized and robust 
prediction [10]. Similarly, Marçal and Garcia [11] in their experiment using ensemble techniques highlighted the 
potential of this technique in bug prediction as well as ultimately enhancing software reliability. 

1.2.  Cross Validation Technique 

Cross-validation is a statistical technique used to assess and compare learning algorithms by dividing data into two 
segments: one for training the model and the other for validating it. In traditional cross-validation, the training and 
validation sets must overlap in subsequent rounds to ensure that every data point is equally verified. The most basic 
type of cross-validation is k-fold cross-validation. Other types of cross-validation include special cases of k-fold cross-
validation or multiple rounds of k-fold cross-validation [12]. 
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The cross-validation technique was deployed in this study as a model evaluation technique to train and assess the 
proposed model’s performance on unseen data. This technique will improve the model’s generalization abilities and 
further improve the model’s accuracy and robustness. 

2. Evaluation Measures for Software Bugs Prediction 

In this section, we will discuss some measurements for software defect prediction such as 

accuracy, precision, recall, and F1-score, to gain insights into the classifier's effectiveness. This will also form part of the 
evaluation metrics deployed in this study to evaluate the proposed classifier model. [13] in their systematic review of 
the ensemble learning approach for software defect prediction established that the AUC, accuracy, F-measure, Recall, 
and precision were mostly used to measure the prediction performance of models. This explains the adoption of the 
under-listed measurement parameters. 

 Accuracy: The accuracy of the enhanced classifier was determined by calculating the ratio of correctly predicted 
instances to the total instances in the testing dataset. This metric provided an overall measure of correctness in 
the predictions. 

 Precision: Precision-measured the ratio of correctly predicted positive instances to the total predicted positive 
instances. A higher precision indicated that the classifier made fewer false positive predictions. Precision is 
calculated by dividing the total number of instances classified as faulty (TP + FP) by the number of cases 
accurately identified as defective (TP) [14]. 

 Recall (Sensitivity): Recall calculated the ratio of correctly predicted positive instances to the actual total 
positive instances. A higher recall indicated that the classifier captured more of the actual positive instances. 

 F1-Score: F-score metrics, which are widely used in the literature, represent the harmonic mean of accuracy 
and recall [15]. 

 ROC-AUC, by evaluating the trade-offs between TPR and FPR, determines the area under the receiver operating 
characteristic (ROC) curve. 

True Positive (TP) represents the number of defective software instances correctly identified as defective, while True 
Negative (TN) is the number of clean software instances correctly identified as clean. False Positive (FP) represents the 
number of clean software instances incorrectly identified as defective, and False Negative (FN) is the number of 
defective software instances incorrectly identified as clean. 

3. Experimental Methodology and Model Development 

The experiment was tested on multiple publicly available datasets. These datasets include the Ar1, Ar4, Jm1, Kc1, Pc1, 
Pc4 and Mozilla4 datasets. Details about the dataset are provided in Table 1 below including the number of samples in 
each dataset, the Language of the original datasets, and the number of features computed from each of the dataset. 

Table 1 Dataset Summary  

Dataset Number of Modules Number of Defective Modules Number of Attributes (Software Metrics) 

JM1 7782 1672 21 

AR1 194 36 39 

AR4 1988 46 38 

MOZILA 125 44 39 

PC1 705 61 37 

PC2 745 16 36 

PC4 1287 177 37 

In this section, we discuss the critical phase of the classifier model development. The experiment focuses on the design 
and implementation of an enhanced ensemble classifier and the steps deployed toward the construction and 
implementation of a robust classifier model. 



International Journal of Science and Research Archive, 2024, 12(02), 2363–2373 

2366 

The foundation of any predictive model lies in the quality and suitability of the underlying data. The dataset used for 
this research was sourced from an online repository which includes the PROMISE repository web and NASA repository. 
Comprising Ar1, Ar4, Jm1, Kc1, Pc1, Pc4 and Mozilla4. Upon completion of all the Data preprocessing and cleaning of 
the Datasets, the dataset was cleaned and ready for training and testing. 

To construct the proposed enhanced model, a range of machine learning algorithms, each serving as a base classifier 
was used for the experiment. These included Decision Trees, Random Forests, Support Vector Machines (SVM), and 
Gradient Boosting. Decision Trees provide interpretability, while Random Forest and Gradient Boosting excel in 
capturing complex relationships. SVM was chosen for its ability to handle high-dimensional data and nonlinear decision 
boundaries. 

The proposed classifier combined the predictions of these base classifiers using a soft voting strategy. One of the 
methods an ensemble classifier uses to forecast is the voting strategy. A voting classifier is a kind of machine learning 
model that anticipates an output (class) based on the probability that the chosen class will be the outcome after learning 
from a large ensemble of models. To predict the output class based on the most votes, it merely averages the results of 
each classifier that was entered into the voting classifier. Instead of building individual specialized models and 
evaluating their accuracy, the objective is to create a single model that learns from multiple models and makes 
predictions based on the total number of votes for each output class. 

 

Figure 1 Voting technique Architecture Datajango (2019) 

Fig. 1 shows the voting technique architecture with three base models and two out of the three predicted 0. A vote is 
carried out with the majority being 0 predicted as output. 

There are two voting techniques known as Hard and Soft Voting. 

In a hard voting classifier, the outcome is determined by which classifiers received the most votes overall.  

On the other hand, a soft voting classifier is based on the average predicted class probabilities of the several classifiers. 
Soft voting frequently results in improved performance, especially when the classifiers produce predictions with 
varying degrees of uncertainty. 

It is on the strength of the soft voting classifier that this study built upon in modifying and improving it to derive an even 
better prediction accuracy. 

The Soft Voting classifier/model is represented as  

𝑃𝑠𝑜𝑓𝑡(𝑐𝑙𝑎𝑠𝑠 0) =
1 

𝑁
∑ 𝑤𝑖  . 𝑝𝑖 , 0

𝑁

𝑖=1

  … … . . (1) 
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Where: 
𝑃𝑠𝑜𝑓𝑡 is the soft voting probability for 0 
n is the number of classifiers, 
wj is the weight associated with the j-th base classifier,  
Pi (X=j) is the probability assigned by the i-th base classifier to the j-th class. 

In soft voting, the class labels are predicted based on the weighted average of the predicted probabilities from individual 
classifiers. This strategy tends to perform well when the base classifiers have varying strengths. Soft voting uses the 
accuracy metrics for evaluation by combining the predicted probabilities from multiple models and selecting the class 
with the highest average. The disadvantages of this are that equal weight is given to all the models regardless of their 
performance and biases can still influence the final prediction. The use of only one single metric (accuracy) for 
evaluation may not provide an accurate estimate of the model’s true performance. The soft voting technique does not 
also guarantee model adaptability or generalization to new data sets that may be given to the model. 

To solve the above shortcomings, the cross-validation score for each base model is obtained and normalized. Cross-
validation is a technique used to assess the model’s performance by splitting the data set into multiple subsets or folds. 
Each fold is used as a validation set while the remaining folds are used for training. The cross-validation score is the 
average score performance of the model across all folds. 

This technique offers a more robust evaluation metric when compared to just the model’s accuracy. Cross-validation 
will enable the proposed classifier to mitigate the impact of data variability and provide a more representative measure 
of how well the model generalizes to unseen data, thereby making the classifier flexible. 

The purpose of normalizing cross-validation scores is to ensure the derived scores from each training cycle are scaled 
to a common range. This also ensures that each base model contributes to the outcome of the model since all the base 
models are trained on the data set and the scores derived. This goes a long way in improving and enhancing a model's 
predictive capabilities. A detailed algorithmic description of the Ensemble Classifier is presented, elucidating the inner 
workings of this implementation. 

4. Ensemble Classifier Algorithm 

 Select n base classifiers (base_clf_1, base_clf_2, ..., base_clf_n) 

 Send all the trained data for cross validation (CV) for each of the task models, and then find CV scores for all of 

them. 

 𝑇𝑟𝑎𝑖𝑛 𝐷𝑎𝑡𝑎 = {

𝐵𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙 1 → 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 1
𝐵𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙 2 → 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 2

⋮
𝐵𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙 𝑁 → 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 𝑁

Summation of all CV scores: 

 Sum of all CV score=CV score 1+CV score 2+ ⋯+CV score N 

 Obtain the square root of sum of CV score: 

 𝐴 = √𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝐶𝑉 𝑠𝑐𝑜𝑟𝑒𝑠 = √𝐶𝑉 𝑠𝑐𝑜𝑟𝑒 1 + 𝐶𝑉 𝑠𝑐𝑜𝑟𝑒 2 +  ⋯ + 𝐶𝑉 𝑠𝑐𝑜𝑟𝑒 𝑁 

 Normalization scores: Score n = Cv Score n/sqrt (Sum (CV Scores)) 

 Obtain the probabilities of success of all the base models. 

From the Algorithm above, it shows the steps in building up the ensemble classifier which is represented with the 
equation below. 

𝑠𝑛 = {
𝐶𝑉𝑆𝑐𝑜𝑟𝑒𝑛

√∑ 𝐶𝑉𝑆𝑐𝑜𝑟𝑒
𝑁
𝑛=1

 , 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁……………(2) 

Where, i is the number of base classifiers.  
𝐶𝑉𝑆𝑐𝑜𝑟𝑒𝑛

is the cross-validation score of the ith base classifier. 

𝑠𝑛 is the normalized score for i th base classifier. 

𝑛𝑜𝑟𝑚𝑝𝑟𝑜𝑏 = ∑ 𝑆𝑛 ∗ 𝑃𝑛

𝑁

𝑛=1

… … … … … … … . (3) 
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𝐸𝑐 = {
1, 𝑖𝑓 ∑ 𝑆𝑛 ∗ 𝑃𝑛

𝑁

𝑛=1

>  0.5

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 … … … … . . (4) 

The above equation is the resulting Ensemble classifier derived during this study. 

Where: 
Ec is the ensemble classifier.  

Pn is the success probability of the ith base classifier.  

normprob is the normalized probability which we find by using the above formula? 

Equation 4 shows the combination of soft voting and cross-validation where the average confidence probability of each 
base classifier is combined with the normalized cross-validation score obtained from the based classifier to derive a 
very robust and dynamic ensemble classifier. 

This is achieved by first finding the cross-validation score of each base model using the training dataset. Now each 
model's CV score is normalized by dividing it by the sum of all scores. 

Now, each record for which the prediction is required is predicted through each of the base models and the probability 
of success is found out. Each probability is multiplied by the percentage of its respective base model and then all the 
probabilities are summed up. If the value is less than 50, failure is predicted, or else a success. 

5. Experiment Results and Discussion  

5.1. Presentation of Findings 

As earlier stated, the classifier model was deployed on a total of six data sets with evaluations based on accuracy, 
precision, recall, F1 score, and ROC. then derived a performance score which is derived by dividing all the metrics. Find 
below the outputs from the deploying model. 

The outcome of the experiment is presented in Tables 2 and 3 after deploying the proposed classifier on all selected 
data sets obtained from the NASA website. From the output displayed, the outcome showed a very strong performance 
across all the metrics from our proposed classifier. Also observed was that the classifier averages almost 90% across all 
metrics in terms of performance making it a very strong classification model. When compared to an ensemble soft voting 
classifier. 

 Table 2 Output derived from deploying the proposed classifier across all 7 datasets using  

 Datasets Accuracy F1 Score Precision  Recall ROC AUC 

AR1 0.985294 0.985507 0.971429 1.000000 0.999134 

AR4 0.886792 0.903226 0.875000 0.933333 0.946429 

PC1 0.930225 0.930536 0.932760 0.928322 0.982217 

PC3 0.931116 0.933941 0.969267 0.901099 0.982461 

PC4 0.931116 0.921143 0.968750 0.877996 0.92461 

JM1 0.832574 0.827936 0.811472 0.845082 0.900222 

MOZILLA 0.954839 0.955128 0.967532 0.943038 0.987133 
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Table 3 Output derived from deploying the existing soft voting classifier across all 7 datasets  

Datasets Accuracy F1 Score Precision  Recall ROC AUC 

AR1 0.970588 0.971429 1.000000 0.944444 0.974048 

AR4 0.924528 0.923077 0.888889 0.960000 0.974359 

PC1 0.928948 0.928583 0.922513 0.934733 0.981523 

PC3 0.922803 0.923619 0.953883 0.895216 0.980763 

PC4 0.908551 0.913386 0.973621 0.860169 0.981442 

JM1 0.832194 0.826463 0.793441 0.862351 0.901818 

MOZILLA 0.948387 0.947712 0.957096 0.938511 0.983670 

The results of the experiments, as illustrated in Tables 2 and 3 and summarized in Fig 2 below, indicate that the 
proposed model attained an accuracy average of 93%, contrasting with the existing Ensemble Soft Voting Classifier 
which achieved an accuracy average of 92% across all seven data sets experimented on. This suggests that the proposed 
model performed slightly better compared to the existing Ensemble soft voting classifier. The result also showed that 
the proposed classifier had less mis classified data when compared to the soft voting classifier making it a better 
preforming model. The proposed model also showed better performance in data generalization to new datasets hence 
its ability to have more correctly classified data and less misclassified data.  

 

Figure 2 Average Classifiers Performance evaluation in terms of Accuracy across all datasets. 

The Cross Validation technique that was applied to ensure each base model was trained on a fold of each dataset 
iteratively improved the learning of the model and ensure the classifiers were dynamic in nature. The Derived CV score 
from each training for each metric was also derived and normalized, ensuring the predictions were more robust and 
accurate compared to just using a single metric like accuracy; very important also is the process of normalization which 
can be attributed to as the main reason for the improved performance of our proposed model. 

6. Related Works 

Dada, et al. [16], who developed a multi-model ensemble machine learning approach for software predictions. Their 
research addressed the challenges of low classification accuracy and time-consuming processes in software defect 
detection. They presented an ensemble machine-learning model that integrated Linear Discriminant Analysis (LDA) 
with Random Forest as the basic learner, a Generalized Linear Model with Elastic Net Regularization (GLMNet), and k 
k-nearest neighbor (kNN). Using the RStudio simulation program, their experimental investigation concentrated on the 
CM1, JM1, KC3, and PC3 datasets from the NASA PROMISE repository. An accuracy level of 88.56% was attained on 
average by their ensemble technique. Alazba and Aljamaan [17] used a stacking ensemble approach built with a fine-
tuned tree-based ensemble using a grid search algorithm to optimize seven selected tree-based ensembles to improve 
defect prediction in software. Their evaluation was on 21 publicly available data sets and they reported their results to 
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demonstrate the effectiveness of stacking ensemble overall fine-tuned tree-based ensemble. A study by Balogun et al. 
[18], noted that most studies considered model accuracy above other performance metrics and so evaluated single 
classifiers and ensemble techniques like stacking, bagging, and voting on 11 defect datasets. Their result ranked stacking 
technique and Voting as the highest and best performers in software defect prediction with a priority level of 0.0493. In 
addition, a review of the research done by Khalid et al. [19] on machine learning-based software defect prediction 
analysis was conducted. Improving model performance—more especially, accuracy and precision—was their goal. The 
classification of class labels was accomplished by the researchers using K-means clustering, and they applied 
classification models to specific features. To optimize their model, they employed partial swarm optimization. The 
performance evaluation included metrics such as precision, accuracy, recall, F-measure, performance error metrics, and 
a confusion matrix. According to their findings, all machine learning (ML) and optimized ML models achieved maximum 
results. Specifically, the accuracy of Optimized Random Forest (RF), and ensemble approaches reached 93.90% and 
93.80%, respectively. This comparison provides a valuable benchmark for evaluating the efficacy of our proposed model 
in the context of software defect prediction. However, the current model, which aimed to Design an Ensemble Classifier 
for Software Defect Detection and Prediction achieved an overall accuracy level of 93%.  

Table 4 is a tabulation and a suitable visualization to represent the accuracy percentages of the different models’ studies 
in the context of software defect prediction. 

Sanchita Pandey et al. [ 20] used in their experiment. To prevent over-fitting, a genetic algorithm was employed to 
extract pertinent features from the obtained datasets. 

Using techniques from artificial neural networks, decision trees, and random forests, the collected features were sorted 
into non-defective and defective classes. 

Moreover, f-score, recall, accuracy, and precision were used to assess the methods. Following the completion of the 
experiments, it was found that, with average scores of 83.40%, 53.18%, and 52.04%, respectively, the random forest 
method outperformed the other algorithms in terms of accuracy, precision, and f-score. Furthermore, the outcomes 
demonstrated that neural networks excel in recollection with an algorithmic average score of 60%. As a result, the 
system assisted software developers in creating high-quality software by enabling them to verify that it had few or no 
flaws before shipping it to clients. While this is not a poor grade, the model's average defect recall rate of 60% indicates 
that there is still room for improvement. 

Khan [21] proposed an integration of the sampling technique and some common classification techniques to form a 
stronger Ensemble model for software defect prediction. The empirical results conducted showed a positive output on 
the benchmark datasets of software projects when compared to single classifiers. The researchers however carried out 
their experiment on a limited number of single classifiers. 

Ten well-known software defect datasets were utilized in a comparison analysis by Alsaeedi and Khan [22]. The 
selection of the dataset was based on how frequently the same dataset had been used in similar studies. The base 
classifiers that were used were LR, DS, RF, and Linear SVC SVM. For each base classifier, the options of bagging and 
boosting classifiers were also considered. Python was used as the platform for conducting the research. The study 
employed many metrics to assess the classifiers' performance, including classification accuracy, precision, recall, F-
score, and ROC-AUC score. 

The datasets were divided into ten successive folds using 10-fold cross-validation, which was used to assess the 
classifiers' performance. The remaining folds of data are for training, and one-fold is for testing. Following that, the 
standard Scaler function in was used to standardize and scale the features. The remaining folds of data are for training, 
and one-fold is for testing. The characteristics were then scaled and standardized using the Python standard Scaler 
function, which operates by scaling the features into unit variance and subtracting the mean. Given that SMOTE has 
been extensively employed in the literature to address imbalance concerns in training data for SDP, the oversampling 
strategy was applied exclusively to the training data due to the extreme imbalance of the datasets. It iterated over all 
datasets after first supplying a list of datasets and a list of classifiers. Ten-fold cross-validation was used to divide the 
datasets into training and testing sets, with the data being shuffled before the split. After the dataset was divided, the 
Standard Scaler function was used to scale and standardize the features. The training data for each fold were re-sampled 
using the SMOTE approach after the features had been standardized. 

Achuta et al. [23] researched software defect prediction (SDP) using classifiers such as AdaBoost, Random Forest, and 
Random Tree. They propose a Boosting technique that generally reduces both the variance and the bias of the 
classification which should lead to a considerably more accurate prediction. The evaluation parameters set out in their 
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study include classification accuracy, precision, and recall score. Results show that the classification accuracy of 
AdaBoost Performed better by 2.25% than Random Forest, and by 3 % than Random Tree. Similarly, the recall, 
precision, and F measure outperforms the proposed classification algorithm. Interestingly this is one of the very few 
models that have set their evaluation parameters to include all major measuring metrics and has a good recall score. 

Kumar et al. [24] applied a stacking ensemble learning technique to improve the prediction accuracy of defects and 
performance based on software quality-defined code characteristics. The Stacking technique combines the base 
classifiers by using a meta-classifier that learns base-classifiers output. It has certain advantages, such as easy 
implementation and combining classifiers by investigating various inducers. Their approach was evaluated and 
compared with different Machine Learning (ML) classifiers on ivy2.0, tomcat, and velocity1.6 datasets available in 
PROMISE. Their experimental findings revealed that the proposed approach has better prediction recall, accuracy, 
precision, AUC-ROC, and f-measure. 

A deep forest-based defect prediction model was suggested by Sanchita Pandey et al [20]. By constructing the defect 
prediction model (DPDF) using a deep forest model, the authors developed a sophisticated method to enhance defect 
prediction performance. The new cascade technique that the model employs, which converts random forest classifiers 
into a layer-by-layer structure, is thought to help it find more fault features. Deep learning and ensemble approaches 
are fully utilized in the design. 25 open-source projects from four public data sets—NASA, Promise, AEEM, and Relink—
were used to assess the suggested model. When compared to the best conventional machine learning algorithm, the 
testing result demonstrates that the method employed raised the AUC value by 5%, demonstrating that the suggested 
Deep technique is useful for predicting software defects in DPDF. Comparing DPDF to six baseline classifiers—GC Forest, 
Deep belief network, random forest, naïve Bayes, logistical regression, and support vector machine—was another way 
to assess the efficacy of the algorithm. It is important to remember, nevertheless, that this model was only evaluated 
using Area under Curve (AUC), a prediction-based metric. This suggests that many metrics, including recall, F-score, 
accuracy, and precision, were overlooked. 

The above-mentioned approaches differ from the proposed approach in this paper in two ways. Firstly, we combined 
two techniques Ensemble and Cross-Validation to improve the classifier model’s performance in terms of correctly 
classifying data and generalization to unseen data. Several evaluation metrics such as accuracy, F1 score, AROC, 
precision, and Recall were used compared to the deep forest-based defect prediction model suggested by Sanchita 
Pandey et al which was evaluated using only one metric in Area under Curve (AUC), a prediction-based metric. This 
suggests that many metrics, including recall, F-score, accuracy, and precision, were overlooked. 

Secondly, a very similar study to our approach presented in this paper was conducted by Dada, et al. who developed a 
multi-model ensemble machine learning approach for software predictions. Their research addressed the challenges of 
low classification accuracy and time-consuming processes in software defect detection. They presented an ensemble 
machine-learning model that integrated Linear Discriminant Analysis (LDA) with Random Forest as the basic learner, a 
Generalized Linear Model with Elastic Net 

Regularization (GLMNet), and k k-nearest neighbor (kNN). Using the RStudio simulation program, their experimental 
investigation concentrated on the CM1, JM1, KC3, and PC3 datasets from the NASA PROMISE repository. An accuracy 
level of 88.56% was attained on average by their ensemble technique. 

Also, Kumar et al. [24] adopted the stacking technique in their approach of combining multiple base classifiers to 
improve prediction accuracy. This technique uses a meta-model approach to learn how to combine predictions. Even 
though this approach is suitable for complex interactions, it does not offer the kind of robustness the Voting technique 
adopted in this study brings. Combining this robust attribute of the voting technique and the generalization attribute of 
cross-validation promises to produce a more accurate prediction score and a more improved model performance. 

The general finding in these related works is that Ensemble techniques generally improve the performance of models 
compared to solo models. However, the Ensemble approach alone is not enough as there is room to further improve the 
model's performance and generalization to unforeseen data. Therefore, we have focused on combining two techniques 
capable of improving performance, reducing misclassification, increasing generalization to unseen data, and increasing 
the robustness of the model. 
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Table 4 The Accuracy Percentages of the Different Models Studies in the Context of Software Defect Prediction 

S/No AUTHORS TITLE Accuracy (%) 

1. Dada et al. (2021) Ensemble Machine Learning Model for Software Defect Prediction 88.56 

2 Khalid et al. 
(2023) 

Software Defect Prediction Analysis Using ML Techniques  93 

 3. Proposed (2024) Design of an Ensemble Classifier for software Defect Detection and 
Prediction 

93 

7. Conclusion and Future Works 

In conclusion, this experiment focused on designing and implementing an enhanced Ensemble classifier that seeks to 
be better than the existing soft classification method in predicting defects in software. The model developed used a 
combination of soft voting technique and Cross-Validation technique to improve upon existing methods of defect 
prediction. Through experiments and testing, the study looked to improve upon the existing soft classification method 
by modifying the model. The modification is achieved by normalizing the cross-validation score from each base model 
and finding the weightage average. This allows each base model to contribute some weight during the prediction 
process thus improving the accuracy of the model. When compared to the existing soft voting classifier, the modified 
classifier seemed to perform slightly better and on the same level in some cases. These results have important 
implications for the field of software engineering, as more accurate efficient, and flexible methods of defect prediction 
can help reduce the costs associated with software development and maintenance. 

For further research, the modified classifier can be modified to predict the impact of a defect on the entire software 
module or unit of test. A collaboration with an industry partner or open-source projects to apply this classifier and 
evaluate its performance is also recommended. 
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