
* Corresponding author: A. Joshua Cyril Yagan

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Developing an SEIHR epidemiological model featuring saturated incidence rate and 
investigating its stability  

A. Joshua Cyril Yagan * and D. Jasmine  

Department of Mathematics, Bishop Heber College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli 
- 620 017.Tamil Nadu, India. 

International Journal of Science and Research Archive, 2024, 12(02), 1284–1296 

Publication history: Received on 16 June 2024; revised on 23 July 2024; accepted on 26 July 2024 

Article DOI: https://doi.org/10.30574/ijsra.2024.12.2.1362 

Abstract 

Each and every person will inevitably come into contact with infectious diseases over their lifetime. This unavoidable 
phenomena is a characteristic of all people. Ideally, the effects of such diseases are still controllable, but under 
unfavourable circumstances, they may worsen and become full-fledged outbreaks. As a result, this article tries to offer 
an SEIHR model whose main goal is to reduce and stop the transmission of infectious diseases. Notably, infectious 
diseases continue to plague many countries, represented by the global threat of Covid-19, underlining the urgent need 
for efficient control methods. This model stands out because it carefully takes into account the saturated incidence rate 
of infectivity. The concept also divides the infected population into two different groups, enabling more focused and 
customized medical interventions. The article begins by closely examining the positivity and boundedness of the model, 
then conducts a thorough analysis of the fundamental reproductive number. The model's stability is then categorically 
proven at both equilibrium points. In summary, the article concludes with convincing numerical simulations that 
validate the suggested model, providing convincing evidence of its effectiveness as a whole. In conclusion, the suggested 
SEIHR model, which is supported by a wealth of empirical evidence confirming its efficacy and optimality, represents a 
significant advancement in the management and containment of infectious diseases. It offers a promising route for 
addressing the enduring threat of infectious diseases on a global scale, and its unique form and extensive analysis 
highlight its potential to alter our approach to infectious disease control. 

Keywords: Infectious diseases; SEIHR model; Saturated Incidence rate; Outbreak Prevention; Efficacy validation 

1. Introduction

Mathematical modeling stands as a fundamental pillar in epidemiology, furnishing a sturdy method for comprehending 
and foretelling outbreaks. Within infectious disease exploration, these models furnish an organized platform for 
scrutinizing the intricate dynamics of transmission, encompassing a myriad of influencing factors. At the core of these 
models lie incidence rates, gauging the velocity of new case emergence within a populace. These rates serve as linchpins 
in seizing the temporal nuances of infectious ailments, shaped by populace magnitude, environmental variables, and 
public health interventions. Through the integration of saturated incidence rates, models recognize that transmission 
eventually reaches equilibrium owing to factors such as immunity or a dwindling pool of susceptible individuals. 

Beyond comprehending disease dynamics, mathematical modeling plays a crucial role in shaping public health policies 
and interventions. Through simulating various scenarios and forecasting potential outcomes, it facilitates decision-
making, allocation of resources, and formulation of strategies, encompassing control measures, while also evaluating 
their efficacy. 
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In essence, the synergy between mathematical models and incidence rates, coupled with their nuanced integration, 
particularly through saturated incidence rates, proves indispensable in unraveling the intricacies of infectious disease 
dynamics. Within the realm of infectious diseases, this approach not only enriches theoretical comprehension but also 
empowers practical implementations, enabling a more informed and targeted response to mitigate their impact on 
global health. 

In 2020, a study published in Chaos, Solitons & Fractals (Ndaïrou, 2020) employed mathematical modeling to delve into 
the transmission dynamics of COVID-19, focusing specifically on Wuhan. By integrating a multitude of characteristics 
and dynamics into their model, the authors likely conducted a comprehensive analysis of the disease's transmission. 

Furthermore, Mammeri Y's research, featured in Computational and Mathematical Biophysics (Mammeri, 2020), 
presents a reaction-diffusion system aimed at aiding readers in understanding the impacts of implementing measures 
against the COVID-19 pandemic. This study probably utilizes a diffusion-based SEIR-type model to assess the 
geographical spread of the virus in France. 

The study by Ouedraogo et al. (2021) explores the stability analysis of an SEIHR model concerning infectious disease 
transmission. Additionally, the authors scrutinize the stability and equilibrium behavior of the proposed model. This 
piece was published in Non-autonomous Dynamical Systems (2021). 

A pre-print titled "Investigating the Impact of Asymptomatic Carriers on COVID-19 Transmission" by Aguilar JB et al. 
(2020) is available on medRxiv. This preprint delves into the influence of asymptomatic carriers on the kinetics of 
COVID-19 transmission, potentially shedding light on the role of individuals without visible symptoms in spreading the 
virus. 

In the work by Niu et al. (2021), published in Nonlinear Dynamics, a stochastic SEIHR model is introduced to 
accommodate the inherent variability in COVID-19 data. The authors employ a probabilistic modeling approach to 
address the pandemic's fluctuating characteristics. 

According to research conducted by Malagutti RM et al., titled "SEIHR Epidemic Model Applied to the COVID-19 
Outbreak in Sao Paulo" (Malagutti, R. M., & Eisencraft, M., 2021), utilizing the SEIHR model can aid in evaluating the 
dynamics of the COVID-19 outbreak. The findings published could provide valuable insights into the progression of the 
disease within a specific region. 

In a study titled "Determining Important Parameters in the Spread of Malaria through Sensitivity Analysis of a 
Mathematical Model" (Chitnis et al., 2008), published in the Bulletin of Mathematical Biology in 2008 by Chitnis N et al., 
although not directly focused on COVID-19, a comparative perspective might be gleaned. Through a sensitivity analysis, 
the authors aimed to identify pivotal factors influencing the spread of malaria. 

The article "Optimal Control of SEIHR Mathematical Model of COVID-19" (Yoda et al., 2023) by Yoda Y et al. delves into 
determining the most effective control measures for the COVID-19 SEIHR model. This study proposes methods to 
enhance strategies and mitigate the impacts of the disease. 

For the examination of local stability in epidemic models, Adom-Konadu A et al. (Adom-Konadu et al., 2022) employed 
the corollary of Gershgorin’s Circle Theorem. Their work may elucidate the stability characteristics of epidemiological 
models. 

In 2022, Kim YR et al. published an article titled "A Model of COVID-19 Pandemic with Vaccines and Mutant Viruses" in 
PLOS ONE (Kim et al., 2022). In the context of the COVID-19 pandemic, their paper proposes a model that incorporates 
vaccinations and mutant viruses, exploring how disease dynamics are influenced by vaccination strategies. 

Human migration is integrated into an SEIHR model in the research by Niu R et al. (Niu et al., 2020), published in IEEE 
(2020), aiming to enhance understanding of the spatial dynamics of the COVID-19 pandemic. 

The study by Rodrigues HS et al., "Sensitivity Analysis in a Dengue Epidemiological Model" (Rodrigues et al., 2013), 
published in Conference Papers in Mathematics (2013), provides insights into sensitivity analysis concerning a dengue 
epidemiological model. 

In summary, the comprehensive literature review conducted offers a nuanced examination of numerous mathematical 
models utilized in epidemiology, with a particular emphasis on the significant implications of infectious diseases. These 
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studies collectively underscore the pivotal role of mathematical modeling in shaping public health strategies, serving as 
the impetus for this article to elucidate the dynamic complexities of infectious diseases that necessitate accurate 
comprehension and effective management. 

Consequently, this article diverges from conventional SEIHR (Susceptible-Exposed-Infectious-Hospitalized-Recovered) 
models by placing a distinct emphasis on the incidence rate. Unlike many models that predominantly track individuals' 
progression through different disease states, this approach prioritizes the incidence rate to project future at-risk 
individuals. This shift highlights the preventive aspect of the research, aiming to identify and anticipate potential 
infections among populations. 

Through vigilant monitoring of the incidence rate, the study aims to issue early warnings about potential outbreaks and 
pinpoint populations at elevated risk. This proactive stance is vital for comprehending the evolving disease dynamics 
and enables stakeholders to enact timely and targeted measures. Rather than merely reacting to existing cases, focusing 
on the incidence rate provides a forward-looking perspective, guiding preventive actions and interventions. 

Moreover, by integrating the incidence rate into the modeling framework, the study endeavours to deepen our 
understanding of disease transmission dynamics. This enhanced insight into the underlying mechanisms of spread can 
facilitate the formulation of more efficacious strategies for disease control and mitigation. By pre-emptively identifying 
areas or populations with high incidence rates, resources and interventions can be strategically allocated, maximizing 
their effectiveness in curtailing the disease's spread. 

In essence, the emphasis on the incidence rate in this study embodies a proactive and precautionary approach to disease 
modeling. By predicting future at-risk individuals and comprehending the dynamics of disease transmission, it aims to 
equip decision-makers with the requisite knowledge to implement timely and targeted interventions, thereby 
contributing to enhanced disease control and management. 

2. Materials and Methods 

2.1. Formulation of the Model 

The proposed SEIHR epidemiological model is given by  
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where, ,  ,  ,  ,  E IS H R      are the rate of change of Susceptible  S , Exposed  E , Infective  I , Hospitalised  H and 

Recovered  R . The compartment S contains individual who are all susceptible. Likewise, E  contains individual who 

are exposed to the infected person(s) and I  contains individual who are infected by the disease. Also, H  fills the 

compartment with person who are infected at high risk and hospitalised. Whereas, compartment R  consists of 
recovered individuals. The other parameters are described in the table below, 
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Table 1 Parameter Description of the model 

Parameter Description Parameter Description 

  Recruitment rate 
1  Rate at which I recovers 

1  Infection rate from S to I 
2  Rate at which H recovers 

2  Infection rate from S to E 
1k  Disease caused death rate at I 

  Rate at which E moves to I 
2k  Disease caused death rate at H 

  Rate at which E moves to R   Natural mortality 

  Rate at which I moves to H 
1  Saturated incidence rate 

The concise explanation of the biological significance of each rate is provided below: 

Clearly,  determines the rate at which new susceptible individuals enter the population, impacting disease spread 

dynamics and the size of the susceptible pool. 1 , reflects the likelihood of transmission per contact between 

susceptible and infectious individuals, crucial for estimating new infections. 2 , indicates the probability of susceptible 

individuals becoming exposed to the pathogen, accounting for latent or asymptomatic transmission.  , represents the 

speed at which exposed individuals become infectious, influencing the timing and intensity of disease transmission.  , 

determines the likelihood of exposed individuals recovering without becoming infectious, impacting overall disease 
outcomes and herd immunity.  , reflects the likelihood of severe cases requiring hospitalization, essential for 

healthcare resource planning and mitigating disease impact on morbidity and mortality. 1 , represents the speed at 

which infectious individuals recover from the disease, influencing the duration of infectiousness and overall disease 

transmission dynamics. 2 , determines the speed at which hospitalized individuals recover from the disease, impacting 

healthcare resource utilization and patient outcomes. 1k  and 2k , indicates the likelihood of death among the infectious 

and hospitalised individuals due to the disease, respectively. These provide an insight into disease severity and 
mortality risk during infection.  , represents the background rate of death in the population unrelated to the disease, 

providing context for interpreting disease-specific mortality rates and overall mortality burden. Finally 1 , marks the 

point at which disease transmission reaches a stabilizing threshold due to factors like immunity or limited susceptible 
individuals, informing projections of epidemic trajectories and potential control measures. 

2.2. Preliminary Lemmas: 

2.2.1. Lemma 1 

Prove that the solution set of system (1) are positive for all 0t  . 

Proof.  

We have, 
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Integrating and solving, we have 
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Raising to exponentials and simplifying, we get 

( ) 0S t   

Similarly, we can show that .( ) ( ) (0,  0,  0 and 0) ( ) E t tI H Rt t     

Thus, for all 0t   the proposed system (1) is positive. 

2.2.2. Lemma 2 

Show that the solution of system (1) along with the initial conditions are bounded in the region
5
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Hence, the solution set is bounded within the region . 

2.3. Determination of Reproduction number 0R  

Reproduction number denoted as 0R  holds significant importance in epidemiology, serving as an indicator of the 

average number of secondary instances of an infectious disease that an infected individual is anticipated to generate 
within a population entirely susceptible to the illness. It plays a pivotal role in assisting public health officials in gauging 
the potential risk of disease transmission. 

If 0R exceeds 1, it suggests a likelihood of the disease spreading among individuals and triggering an outbreak. 

Conversely, if 0R is less than 1, the disease is less likely to proliferate extensively and may eventually fade out. 

0R  may change based on the contagiousness of the virus, population behaviour and treatments like immunisation or 

social isolation. 

The 0R value of the proposed model can be determined by finding the Jacobian matrix of system (1) as follows, 
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2.4. Existence of Equilibrium points 

Equilibrium points play a vital role in dissecting infection trends within a population in the realm of epidemiology. They 
represent stable situations where the prevalence of an infectious disease remains constant over time. Understanding 
these points is pivotal in deciphering the dynamics of epidemics and devising effective strategies for disease 
management and prevention. 

Two primary equilibrium points exist: the Disease-Free Equilibrium (DFE) and the Endemic Equilibrium (EE). At the 
DFE, the population is devoid of any illness. The onset of an epidemic typically occurs when a contagious disease 
infiltrates a susceptible population. Conversely, the EE emerges when the level of infection within the population 
stabilizes. This equilibrium signifies a scenario where the disease either persists continually throughout the population 
over time or establishes an endemic presence. 
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Using Routh-Hurwitz criterion we show that equation (3) is stable by the following condition. 
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2.5. Stability Analysis of the Equilibrium points: 

Conducting a stability assessment of the Disease-Free Equilibrium (DFE) involves examining whether the population is 
susceptible to disease outbreaks or remains immune under specific conditions. Unravelling the intricacies of disease 
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transmission mechanisms and predicting whether the disease will persist or fade away necessitates a thorough stability 
analysis of the Endemic Equilibrium (EE). By scrutinizing the stability of both disease-free and endemic equilibria in 
mathematical epidemiology models, researchers and public health experts gain insights into the long-term dynamics of 
infectious diseases. Understanding stability criteria allows for prognostications regarding the disappearance, sustained 
prevalence, or fluctuation patterns of diseases within a population, thereby facilitating the development of effective 
management and prevention strategies. 

The stability of these equilibria can be ascertained through specific theorems and proofs, as below: 

2.5.1. Theorem 1 

If the value of 0 1R  , the system (1) at DFE is locally asymptotically stable, whereas it is unstable when 0 1R   

Proof 

From (1), it is observed that the first four equations are independent of R . So, considering only those four equations, 
the stability of system (1) is determined. 

Let  1 0 0 0 0, , ,M S E I H  be the system of equations at DFE. The Jacobian matrix of 1M is obtained as below 

2 0 1 0

2 0

1

1 0 1 1

2 2

)

0

0 0 0
( )

0 0

0 0 ( )

(

( )
J

S S

S

S k

k

M

  

   

    

  

   
 
 
 
 



  

   

 
 

The above matrix has two obvious negative eigenvalues:  and 2 2( )k   . 

Thus, the matrix 1( )J M  reduces as below submatrix 

2 0

1

1 0 1 1(

( ) 0
( )

)
sJ

S
M

S

k

   

    


 

 












 

 

From the corollary of Gershgorin’s Circle Theorem, it satisfies the below conditions, 

  2 0 ( ) 0S      
 

  1 0 1 1( )S k       
 

Simplifying the first condition, we get 

2 0
11

( )
1

S
R



  
  


. …………(4) 

Also, the second condition implies 1 0 1 1( ) 0S k        since the negative of   is less than zero. 

 
1 0

2

1

1 1
S

R
k



  
   

  
. …………….(5) 

Hence, from (4) and (5) it is shown that the DFE is locally asymptotically stable as 0 1R  . 

2.5.2. Theorem 2 

For 0 1R  , the system (1) is locally asymptotically stable at Endemic Equilibrium. 
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Proof. 

Let  * * * *
2 , , ,M E IS H  be the system at endemic equilibrium. The Jacobian matrix of 2M is obtained as 

 

 

* *
* *1 1

2 2* 2
*

1
1

* *
2 2

2
* *

1 1
1 1* 2

*
1

1

2 2

0
1 1

( ) 0 0
( )

( ) 0
1 1

0 0 ( )

I

I

E
J

S
E S

I

S

I S
k

I

k

M

I

 
  

 

    

 
   

 

  

 
   

 
 
 

  
 

   
 

 



 

 



 

Thus, 2 2( )k   is one of the eigenvalue and it is negative. 

Thus, the matrix 2( )J M  reduces as below submatrix 

 

 

* *
* *1 1

2 2* 2
*

1
1

* *
2 2

* *
1 1

1 1* 2
*

1
1

2

1 1

( ) ( ) 0

( )
1 1

s

I

I

J

S
E S

I

E S

I S
k

M

I I

 
  

 

    

 
   

 

 
   

 
 
  
 
 





 

   
 

 

 

From the corollary of Gershgorin’s Circle Theorem, it satisfies the below conditions, 

 

 

* *
* *1 1

2 2* 2
*

1
1

1 1

I S
E S

I I

 
  

 

 
     
   
 

  ……………….(6) 

*
2

*
2( )S E          ……………(7) 

 

* *
1 1

1 12 *
*

1
1

( )
11

S I
k

II

 
   



 
    





 



……………….(8) 

Simplifying (7), we get 

1*
2

( )
( 11)R

E

  



 
   

 

 

1*
2

1

1
(

0

0

)

1

R
E

R

  



 










 

 

Thus, 1 1R   ……………….(9) 
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Similarly solving (8), we get 

 *1 1
2 1* *

1 1

1
(

1
)

( )

1

k
I

I I
R

  


  


 
 







 

*
2 1

2

( ) 1

( ) 0

1

1

R

R

I 

 

  


 

Hence, 2 1R   …………………(10) 

From (9) and (10), it is clear that the EE is locally asymptotically stable as 0 1R  . 

3. Results and Discussion 

To grasp the intricacies of infectious disease transmission dynamics, numerical simulations are employed. This entails 
utilizing the numerical parameters outlined in (Zhang et al., 2014) for analysis, as follows: 

10, 1 2 0.05,   1 0.8,  1.2,  1 2 1 20.4,  0.1,  0.2,  0.5k k           . 

Also, setting initial values as (0) 100,  (0) 3,  (0) 1,  (0) 0,  (0) 0S E I H R     we obtain dynamics of the proposed 

model as given in the below figure. 

 

Figure 1 Representation of Dynamical behaviour of the proposed model 

The model's analysis is depicted in the graphical representation above. Observing the graph, a notable decline is evident 
among those susceptible to the disease. The curves representing exposed and infected individuals show no significant 
increase, and if there is any uptick, it's short-lived. Furthermore, the constrained nature of the curve representing 
hospitalized individuals suggests efficient management and provision of adequate facilities for those requiring 
admission. As per the model's implications, the recovery curve displays a promising trend, signalling a favourable 
outcome. Moreover, the recovery curve consistently maintains its positive trajectory. 

The robustness of the model is illustrated in the figure below, showcasing the effectiveness of the incidence rate in 
ensuring the availability of hospital resources. This reaffirms the accessibility of hospital facilities for all infected 
individuals. 
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Hence, the preceding figures illustrate a rapid decline in the susceptible population, minimal increases in exposed and 
infectious cases, efficient management of hospitalizations, and an encouragingly sustained recovery rate. This portrayal 
hints at a favourable and effectively managed scenario within the scope of the proposed model. 

Moreover, the stability of the proposed model can be visually confirmed through graphical verification using MATLAB, 
yielding the following output: 

 

Figure 2 Graphical representation of the stability of equilibrium points 

In Figure 2, the Equilibrium point 1 and 2 represents the Disease-free equilibrium and the Endemic Equilibrium point 
respectively. 

To determine the numerical value of basic reproduction number, the considered value is substituted in (2). 

Equation (2) gives,  0 1 2max ,RR R where 

2
1

10 0.05
0.4762

0.5 (1.2 0. 0.5)( ) 4
R



   

 
 

   



 

1
2

1 1

10 0.05
0.8333

0.5 (0.1 0.4 0.2 0. )( ) 5
R

k



   

 
  

      
 

Clearly this shows that  

0 0.8333R   …………………..(11) 

3.1. Sensitivity Analysis 

Conducting sensitivity analysis is indispensable for comprehending the impacts of individual parameters in disease 
transmission models. It facilitates experiment design, data assimilation, and the simplification of intricate models by 
assessing how resilient predictions are to variations in parameter values and inherent errors. The basic reproduction 
number, a pivotal epidemiological metric, often garners attention among disease transmission model parameters. 

Identifying these foundational factors is crucial for effective intervention planning. Sensitivity indices, such as the 
normalized forward sensitivity index, quantify the effect of parameter alterations on model outcomes. This index 
delineates the correlation between the relative change in a model output and the relative change in a specific parameter, 
particularly beneficial for differentiable variables. By pinpointing key parameters through sensitivity indices, 
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researchers can concentrate their endeavours on enhancing precision and obtaining accurate results. Consequently, the 
model becomes more reliable in guiding public health decisions and interventions. 

From equation (2) and (11), it is clear that the expression of 0R is 1

1 1( )k



   



  
. The sensitivity indices for the 

same parameter values considered earlier, by the definition of normalised forward sensitivity index of 0R , the latter 

simulations are performed. 

0

2
1 1 1 1 1

2 2
11 1

1 1

1 1

( 2 )

( 2 )

1.4167

( )

( )

( )

R k k

k

k

k



       

   

  

  

      
 

  

  
 

 






 

 

Similarly, the sensitivity indices for other parametric values is obtained as given in Table 2. 

Table 2 Sensitivity indices of R0  

Parameter Sensitivity Index 

  1.4167  

  0.0833  

1  0.3333  

1k  0.1667  

  1  

1  1  

From Table 2, it is clear that the most negative sensitive parameter to the reproduction number of the proposed model 

is  . And the most positive sensitive parameter is the recruitment rate,  and the 1 . Thus, increasing the value of   

by 10%, will decrease the basic reproduction number 0R  by 14.167 %. Similarly, for increase in other parameters the 

basic reproduction number 0R will decrease by its corresponding percentage. 

4. Conclusion 

The incidence rate holds paramount importance in assessing the force of infection as the disease disseminates among 
the susceptible population. Additionally, it aids in gauging the inhibitory impact induced by behavioural alterations in 
susceptible individuals. The model's positivity and boundedness have been confirmed, ensuring its reliability. 
Subsequently, the calculation of the basic reproduction number unveils two distinct scenarios. This leads to the 
identification of equilibrium points, namely the Disease-Free Equilibrium (DFE) and the Endemic Equilibrium (EE). The 

numerical value of 0R is less than one for a locally stable DFE, while the numerical value of 0R is greater than one for 

the endemic equilibrium to be locally stable. Thorough scrutiny is applied to the evidence bolstering the initial assertion. 
The numerical simulation commences with a graphical depiction, shedding light on the suggested model's dynamic 
behaviour. The results unveil an optimistic outlook, characterized by a heightened recovery curve juxtaposed with a 
diminished infective curve. Consequently, the proposed model solidifies its standing as a robust epidemiological 
framework, significantly enriching our understanding of infectious dynamics. 

 



International Journal of Science and Research Archive, 2024, 12(02), 1284–1296 

1296 

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest to be disclosed. 

Funding 

This research did not receive any financial support. 

References 

[1] Ndaïrou, F., Area, I., Nieto, J. J., & Torres, D. F. (2020). Mathematical modeling of COVID-19 transmission dynamics 
with a case study of Wuhan. Chaos, Solitons & Fractals, 135, 109846. 
https://doi.org/10.1016/j.chaos.2020.109846 

[2] Mammeri, Y. (2020). A reaction-diffusion system to better comprehend the unlockdown: Application of SEIR-
type model with diffusion to the spatial spread of COVID-19 in France. Computational and Mathematical 
Biophysics, 8(1), 102-113. https://doi.org/10.1515/cmb-2020-0104 

[3] Ouedraogo, H., Ouedraogo, D., Ibrango, I., & Guiro, A. (2021). A study of stability of SEIHR model of infectious 
disease transmission. Nonautonomous Dynamical Systems, 8(1), 307-327. https://doi.org/10.1515/msds-2020-
0140 

[4] Aguilar, J. B., Faust, J. S., Westafer, L. M., & Gutierrez, J. B. (2020). Investigating the Impact of Asymptomatic 
Carriers on COVID-19 Transmission [preprint]. https://doi.org/10.1101/2020.03.18.20037994 

[5] Niu, R., Chan, Y. C., Wong, E. W., van Wyk, M. A., & Chen, G. (2021). A stochastic SEIHR model for COVID-19 data 
fluctuations. Nonlinear Dynamics, 106, 1311-1323. https://doi.org/10.1007/s11071-021-06631-9 

[6] Malagutti, R. M., & Eisencraft, M. (2021). SEIHR epidemic model applied to the COVID-19 outbreak in Sao Paulo. 

[7] Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining important parameters in the spread of malaria 
through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology, 70, 1272-1296. 
https://doi.org/10.1007/s11538-008-9299-0 

[8] Yoda, Y., Ouedraogo, D., Ouedraogo, H., & Guiro, A. (2023). Optimal Control Of SEIHR Mathematical Model Of 
Covid-19. Electronic Journal of Mathematical Analysis and Applications, 11(1), 134-161. 
https://doi.org/10.21608/ejmaa.2023.284578 

[9] Adom-Konadu, A., Sackitey, A. L., & Anokye, M. (2022). Local Stability Analysis of epidemic models using a 
Corollary of Gershgorin’s Circle Theorem. https://doi.org/10.21203/rs.3.rs-1909006/v1 

[10] Kim, Y. R., Choi, Y. J., & Min, Y. (2022). A model of COVID-19 pandemic with vaccines and mutant viruses. PLOS 
ONE, 17(10), e0275851. https://doi.org/10.1371/journal.pone.0275851 

[11] Niu, R., Wong, E. W., Chan, Y. C., Van Wyk, M. A., & Chen, G. (2020). Modeling the COVID-19 pandemic using an 
SEIHR model with human migration. IEEE Access, 8, 195503-195514. 
https://doi.org/10.1109/ACCESS.2020.3032584 

[12] Rodrigues, H. S., Monteiro, M. T., & Torres, D. F. (2013). Sensitivity analysis in a dengue epidemiological model. 
Conference Papers in Mathematics, 2013, 1-7. https://doi.org/10.1155/2013/721406 

[13] Zhang, J., Jia, J., & Song, X. (2014). Analysis of an SEIR epidemic model with saturated incidence and saturated 
treatment function. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/910421 

https://doi.org/10.1016/j.chaos.2020.109846
https://doi.org/10.1515/cmb-2020-0104
https://doi.org/10.1515/msds-2020-0140
https://doi.org/10.1515/msds-2020-0140
https://doi.org/10.1101/2020.03.18.20037994
https://doi.org/10.1007/s11071-021-06631-9
https://doi.org/10.1007/s11538-008-9299-0
https://doi.org/10.21608/ejmaa.2023.284578
https://doi.org/10.21203/rs.3.rs-1909006/v1
https://doi.org/10.1371/journal.pone.0275851
https://doi.org/10.1109/ACCESS.2020.3032584
https://doi.org/10.1155/2013/721406
https://doi.org/10.1155/2014/910421

