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Abstract 

The plane stagnation point flow, where a fluid stream impinges perpendicularly on a flat surface, is a classic problem in 
fluid dynamics with significant theoretical and practical implications. This report presents a comprehensive numerical 
solution to the plane stagnation point flow using the fourth order Runge-Kutta approximation. The numerical approach 
is developed to solve the governing Hiemenz Flow equation. 

Key flow characteristics, including velocity, are analyzed, offering insights into the fluid behavior near the stagnation 
point. 
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1. Introduction

The study of fluid flow behavior near stagnation points is of paramount importance in both theoretical and applied fluid 
dynamics. A plane stagnation point flow, characterized by the deceleration of a fluid as it impinges perpendicularly on 
a surface, is a fundamental problem with wide-ranging applications in aerodynamics, thermal management, and various 
engineering processes. Understanding the flow characteristics in this region is crucial for optimizing performance and 
ensuring stability in systems where such flow conditions are encountered. 

This study aims to develop and validate a robust numerical solution for the plane stagnation point flow using the fourth 
order Runge-Kutta approximation. The results obtained will not only enhance our theoretical understanding but also 
offer practical insights for applications in engineering design and optimization. 

The following sections will detail the mathematical formulation of the problem and the numerical methods employed. 
Through this work, we aim to contribute to the ongoing advancement of numerical fluid dynamics and its application to 
stagnation point flow phenomena. 

2. Problem Description

The similarity solution for Hiemenz flow can be expressed by the non-dimensional stream function F(η) satisfying the 
ordinary differential equation 

F’’’ + FF’’ + 1 – F’2 = 0 

subject to the boundary conditions 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://ijsra.net/
https://doi.org/10.30574/ijsra.2024.12.2.1357
https://crossmark.crossref.org/dialog/?doi=10.30574/ijsra.2024.12.2.1357&domain=pdf


International Journal of Science and Research Archive, 2024, 12(02), 1088–1098 

 

1089 

F(0) = 0 ; F’(0) = 0 ; F’(∞) = 1 

This is known as a two-point boundary value problem since the conditions are imposed at two different locations. 
However, for simplicity we replace [0,∞] by a finite interval of η = 4.8  

The above ODE may be re-cast into a system of 3 coupled first order equations. Thus, defining the variables Y1 = F, Y2 = 
F’ and Y3 = F’’, we obtain 

𝑑𝑌1
𝑑𝜂

= 𝑌2 

𝑑𝑌2
𝑑𝜂

= 𝑌3 

𝑑𝑌3
𝑑𝜂

= 𝑌2
2 − 𝑌1𝑌3 − 1 

with the boundary conditions Y1(0) = 0, Y2(0) = 0 and Y2(∞) = 1.  

Since Y3(0) is unknown we can guess a value for it and integrate the system forward from η = 0 by solving  the ODEs 
posed as initial-value problems until the condition Y2(∞) = 1 is satisfied. 

We will also develop a program that iteratively guesses the correct value of Y3(0) that satisfies the condition Y2(∞) = 1 
within some prescribed tolerance level 

3. Methodology 

This problem shall be solved numerically using the fourth order Runge-Kutta approximation. We shall carry out 
numerical integration of the coupled first order ODEs with prescribed initial conditions. 

MATLAB codes shall be developed to solve for F and obtain results for F and its derivatives in tabulated and graphical 
forms. Comment statements shall be provided to show the logic of the algorithm. 

MATLAB code shall also be developed that iteratively guesses the correct value of Y3(0) that satisfies the condition 
Y2(∞) = 1 within some prescribed tolerance level. This shall be embedded within the main program. 

A discussion of the physical implications of the results and implications for the velocity components shall be provided. 
A summary of results: tables and plots, shall also be presented as part of the report. 

4. Numerical Solution 

Given the third order ordinary differential equation for Hiemenz flow 

F’’’ + FF’’ + 1 – F’2 = 0 

subject to the boundary conditions 

F(0) = 0 ; F’(0) = 0 ; F’(∞) = 1 

We define new variables: Y1 = F, Y2 = F’ and Y3 = F’’, and obtain the following set of first order coupled ODEs 

𝑑𝑌1
𝑑𝜂

= 𝑌2 

𝑑𝑌2
𝑑𝜂

= 𝑌3 
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𝑑𝑌3
𝑑𝜂

= 𝑌2
2 − 𝑌1𝑌3 − 1 

with the boundary conditions Y1(0) = 0, Y2(0) = 0 and Y2(4.8) = 1. 

The boundary condition Y2(∞) is approximated as Y2(4.8) = 1 since it will be difficult to define infinity on a computer. 

The numerical integration is done using the fourth order Runge-Kutta method with an interval size of h = 0.0005. The 
Runge-Kutta approximation is expressed as: 

𝑦𝑛+1 = 𝑦𝑛 +
1

6
𝑘1 +

1

3
𝑘2 +

1

3
𝑘3 +

1

6
𝑘4 + 𝑂(ℎ5) 

𝑘1 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛) 

𝑘2 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘1) 

𝑘3 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘2) 

𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3) 

Using successive guesses, we obtain a value of Y3(0) = 1.232 that satisfies the boundary condition Y2(4.8) ≈ 1. The code 
is provided below. 

clear; 

clc; 

% Define Parameters 
a = 0; % lower limit of integration 
b = 4.8; % upper limit of integration 
h = 5E-4; % step size 
n = (b-a)/h+1; % number of points 

% Define Initial Conditions 
Y1(1) = 0; 
Y2(1) = 0; 
Y3(1) = 1.232; % obtained by iteration 

% Define the system of ODE function handle 
eta(1) = 0; 
f1 = @(Y2) Y2; 
f2 = @(Y3) Y3; 
f3 = @(Y2,Y3,Y1) Y2*Y2-Y1*Y3-1 

% 4th Order Runge-Kutta Loop 
for i = 1:n-1 
 eta(i+1) = i*h; 
 k1_1 = h*feval(f1,Y2(i)); 
 k2_1 = h*feval(f1,Y2(i)+k1_1/2); 
 k3_1 = h*feval(f1,Y2(i)+k2_1/2); 
 k4_1 = h*feval(f1,Y2(i)+k3_1); 
 Y1(i+1) = Y1(i)+(1/6)*(k1_1+2*k2_1+2*k3_1+k4_1); 
 k1_2 = h*feval(f2,Y3(i)); 
 k2_2 = h*feval(f2,Y3(i)+k1_2/2); 
 k3_2 = h*feval(f2,Y3(i)+k2_2/2); 
 k4_2 = h*feval(f2,Y3(i)+k3_2); 
 Y2(i+1) = Y2(i)+(1/6)*(k1_2+2*k2_2+2*k3_2+k4_2); 
 k1_3 = h*feval(f3,Y2(i),Y3(i),Y1(i)); 
 k2_3 = h*feval(f3,Y2(i)+k1_1/2,Y3(i)+k1_2/2,Y1(i)+k1_3/2); 
 k3_3 = h*feval(f3,Y2(i)+k2_1/2,Y3(i)+k2_2/2,Y1(i)+k2_3/2); 
 k4_3 = h*feval(f3,Y2(i)+k3_1,Y3(i)+k3_2,Y1(i)+k3_3); 
 Y3(i+1) = Y3(i)+(1/6)*(k1_3+2*k2_3+2*k3_3+k4_3); 
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end 

% Plot results 
plot(eta,Y2) 
title("Plot of \eta versus Y2") 
grid on 
xlabel('\eta') 
ylabel('Y2') 

 
 

 

Figure 1 Plot of first derivative of non-dimensional stream function 

 
Y2(4.8) = 1 

Next, we develop MATLAB code that iteratively determines the correct value of Y3(0) that satisfies the condition Y2(4.8) 
= 1 within a tolerance level of 1 x 10-3. 

The code proposes a new function as follows. 

𝑔 = 𝑌2(𝜂 = 4.8) 

The value of the function, g, depends on the initial value of Y3. 

𝑔 = 𝑔[𝑌3(0)] 

This function approximately becomes 1 when the true value of Y3(0) is approached, thus, the following equation is 
satisfied. 

𝑔[𝑌3(0)] − 1 = 0 

The code then obtains corresponding values of g for values of Y3(0) within the interval [0:2] using steps of 0.001, which 
is the desired level of accuracy. 

A plot of the function g[Y_3 (0)]-1 is made against Y_3 (0). The desired value of Y_3 (0) occurs where the curve crosses 
the x-axis. This value is Y_3 (0)=1.2320, which is the same as earlier obtained by iteration. 



International Journal of Science and Research Archive, 2024, 12(02), 1088–1098 

 

1092 

A breakdown of the code is provided below. 

 

clear; 

clc; 

% Define Parameters 
a = 0; % lower limit of integration 
b = 4.8; % upper limit of integration 
h = 5E-4; % step size 
n = (b-a)/h+1; % number of points 

% Define Initial Conditions 
Y1(1) = 0; 
Y2(1) = 0; 
p = 1:1E-3:2; 
r = length(p); 
for j = 1:r 
Y3(1) = p(j); 

% Define the system of ODE function handle 
eta(1) = 0; 
f1 = @(Y2) Y2; 
f2 = @(Y3) Y3; 
f3 = @(Y2,Y3,Y1) Y2*Y2-Y1*Y3-1;   

% 4th Order Runge-Kutta Loop 
for i = 1:n-1 
 eta(i+1) = i*h; 
 k1_1 = h*feval(f1,Y2(i)); 
 k2_1 = h*feval(f1,Y2(i)+k1_1/2); 
 k3_1 = h*feval(f1,Y2(i)+k2_1/2); 
 k4_1 = h*feval(f1,Y2(i)+k3_1); 
 Y1(i+1) = Y1(i)+(1/6)*(k1_1+2*k2_1+2*k3_1+k4_1); 
 k1_2 = h*feval(f2,Y3(i)); 
 k2_2 = h*feval(f2,Y3(i)+k1_2/2); 
 k3_2 = h*feval(f2,Y3(i)+k2_2/2); 
 k4_2 = h*feval(f2,Y3(i)+k3_2); 
 Y2(i+1) = Y2(i)+(1/6)*(k1_2+2*k2_2+2*k3_2+k4_2); 
 k1_3 = h*feval(f3,Y2(i),Y3(i),Y1(i)); 
 k2_3 = h*feval(f3,Y2(i)+k1_1/2,Y3(i)+k1_2/2,Y1(i)+k1_3/2); 
 k3_3 = h*feval(f3,Y2(i)+k2_1/2,Y3(i)+k2_2/2,Y1(i)+k2_3/2); 
 k4_3 = h*feval(f3,Y2(i)+k3_1,Y3(i)+k3_2,Y1(i)+k3_3); 
 Y3(i+1) = Y3(i)+(1/6)*(k1_3+2*k2_3+2*k3_3+k4_3); 
end 
 q(j) = Y2(end);  
end 
qi = 1; 
Y3_0 = interp1(q,p,qi) 

% Plot results 
plot (p,q-1) 
xlabel('Y3(\eta=0)') 
ylabel('Y2(\eta=4.8) - 1') 
axis([1 2 -10 50]); 
grid on 
grid minor 
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Figure 2 Plot of first derivative vs second derivative of stream function 

Y3(0) = 1.2320 

Finally, the subroutine that produces Y1, Y2 and Y3 is embedded within the iterative loop that solves for the correct 
value of Y3(0) that satisfies the boundary condition of Y2(4.8) = 1. The final code is shown below. 

clear; 

clc; 

% Define Parameters 
a = 0; % lower limit of integration 
b = 4.8; % upper limit of integration 
h = 5E-4; % step size 
n = (b-a)/h+1; % number of points 

% Define Initial Conditions 
Y1(1) = 0; 
Y2(1) = 0; 

% Loop for boundary condition Y3(0) 
p = 1:1E-3:2; 
r = length(p); 
for j = 1:r 
Y(1) = p(j); 
eta(1) = 0; 
f1 = @(Y2) Y2; 
f2 = @(Y) Y; 
f3 = @(Y2,Y,Y1) Y2*Y2-Y1*Y-1; 
for i = 1:n-1 
 eta(i+1) = i*h; 
 k1_1 = h*feval(f1,Y2(i)); 
 k2_1 = h*feval(f1,Y2(i)+k1_1/2); 
 k3_1 = h*feval(f1,Y2(i)+k2_1/2); 
 k4_1 = h*feval(f1,Y2(i)+k3_1); 
 Y1(i+1) = Y1(i)+(1/6)*(k1_1+2*k2_1+2*k3_1+k4_1); 
 k1_2 = h*feval(f2,Y(i)); 
 k2_2 = h*feval(f2,Y(i)+k1_2/2); 
 k3_2 = h*feval(f2,Y(i)+k2_2/2); 
 k4_2 = h*feval(f2,Y(i)+k3_2); 
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 Y2(i+1) = Y2(i)+(1/6)*(k1_2+2*k2_2+2*k3_2+k4_2); 
 k1_3 = h*feval(f3,Y2(i),Y(i),Y1(i)); 
 k2_3 = h*feval(f3,Y2(i)+k1_1/2,Y(i)+k1_2/2,Y1(i)+k1_3/2); 
 k3_3 = h*feval(f3,Y2(i)+k2_1/2,Y(i)+k2_2/2,Y1(i)+k2_3/2); 
 k4_3 = h*feval(f3,Y2(i)+k3_1,Y(i)+k3_2,Y1(i)+k3_3); 
 Y(i+1) = Y(i)+(1/6)*(k1_3+2*k2_3+2*k3_3+k4_3); 
end 
 q(j) = Y2(end); 
end 
qi = 1; 
Y3(1) = interp1(q,p,qi); 

% Define the system of ODE function handle 
eta(1) = 0; 
f1 = @(Y2) Y2; 
f2 = @(Y3) Y3; 
f3 = @(Y2,Y3,Y1) Y2*Y2-Y1*Y3-1; 

% 4th Order Runge-Kutta Loop 
for i = 1:n-1 
 eta(i+1) = i*h; 
 k1_1 = h*feval(f1,Y2(i)); 
 k2_1 = h*feval(f1,Y2(i)+k1_1/2); 
 k3_1 = h*feval(f1,Y2(i)+k2_1/2); 
 k4_1 = h*feval(f1,Y2(i)+k3_1); 
 Y1(i+1) = Y1(i)+(1/6)*(k1_1+2*k2_1+2*k3_1+k4_1); 
 k1_2 = h*feval(f2,Y3(i)); 
 k2_2 = h*feval(f2,Y3(i)+k1_2/2); 
 k3_2 = h*feval(f2,Y3(i)+k2_2/2); 
 k4_2 = h*feval(f2,Y3(i)+k3_2); 
 Y2(i+1) = Y2(i)+(1/6)*(k1_2+2*k2_2+2*k3_2+k4_2); 
 k1_3 = h*feval(f3,Y2(i),Y3(i),Y1(i)); 
 k2_3 = h*feval(f3,Y2(i)+k1_1/2,Y3(i)+k1_2/2,Y1(i)+k1_3/2); 
 k3_3 = h*feval(f3,Y2(i)+k2_1/2,Y3(i)+k2_2/2,Y1(i)+k2_3/2); 
 k4_3 = h*feval(f3,Y2(i)+k3_1,Y3(i)+k3_2,Y1(i)+k3_3); 
 Y3(i+1) = Y3(i)+(1/6)*(k1_3+2*k2_3+2*k3_3+k4_3); 
end 

% Plot results 
plot(eta,Y1,eta,Y2,eta,Y3) 
title("Plot of \eta versus Y1, Y2 and Y3") 
grid on 
xlabel('\eta') 
ylabel('Y1,Y2,Y3') 
legend('Y1','Y2','Y3') 
plot(eta,Y1,'color', 'b') 
title("Plot of \eta versus Y1") 
grid on 
xlabel('\eta') 
ylabel('Y1') 
plot(eta,Y2,'color', 'r') 
title("Plot of \eta versus Y2") 
grid on 
xlabel('\eta') 
ylabel('Y2') 
plot(eta,Y3,'color', 'y') 
title("Plot of \eta versus Y3") 
grid on 
xlabel('\eta') 
ylabel('Y3') 

5. Results and Discussions 

Using the numerical solution developed, we present a tabulation of 100 values of the results for F and its derivatives as 
a function of η. 
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Table 1 Table of Results for non-dimensional Stream Function 

η F F' F''   η F F' F''   η F F' F'' 

0 0 0 1.232   1.63 1.01 0.937 0.139   3.26 2.617 0.999 0.002 

0.05 0.001 0.058 1.184   1.68 1.055 0.943 0.126   3.31 2.665 0.999 0.002 

0.1 0.006 0.114 1.136   1.73 1.1 0.949 0.115   3.36 2.712 1 0.002 

0.14 0.012 0.167 1.089   1.78 1.146 0.954 0.105   3.41 2.76 1 0.002 

0.19 0.021 0.218 1.042   1.82 1.192 0.959 0.095   3.46 2.808 1 0.001 

0.24 0.033 0.267 0.995   1.87 1.238 0.963 0.086   3.5 2.856 1 0.001 

0.29 0.047 0.314 0.949   1.92 1.284 0.967 0.078   3.55 2.904 1 0.001 

0.34 0.063 0.358 0.904   1.97 1.331 0.971 0.07   3.6 2.953 1 0.001 

0.38 0.081 0.401 0.86   2.02 1.378 0.974 0.064   3.65 3.001 1 0.001 

0.43 0.102 0.441 0.817   2.06 1.424 0.977 0.057   3.7 3.049 1 0.001 

0.48 0.124 0.479 0.775   2.11 1.471 0.98 0.051   3.74 3.097 1 0.001 

0.53 0.148 0.516 0.734   2.16 1.518 0.982 0.046   3.79 3.145 1 0.001 

0.58 0.173 0.55 0.694   2.21 1.566 0.984 0.041   3.84 3.193 1 0.001 

0.62 0.2 0.582 0.656   2.26 1.613 0.986 0.037   3.89 3.241 1 0 

0.67 0.229 0.613 0.618   2.3 1.66 0.988 0.033   3.94 3.289 1 0 

0.72 0.259 0.642 0.582   2.35 1.708 0.989 0.029   3.98 3.337 1 0 

0.77 0.291 0.669 0.547   2.4 1.755 0.99 0.026   4.03 3.385 1 0 

0.82 0.323 0.694 0.514   2.45 1.803 0.992 0.023   4.08 3.433 1 0 

0.86 0.357 0.718 0.482   2.5 1.851 0.993 0.021   4.13 3.481 1 0 

0.91 0.392 0.74 0.451   2.54 1.898 0.994 0.018   4.18 3.529 1 0 

0.96 0.428 0.761 0.421   2.59 1.946 0.994 0.016   4.22 3.577 1 0 

1.01 0.465 0.781 0.393   2.64 1.994 0.995 0.014   4.27 3.625 1 0 

1.06 0.503 0.799 0.366   2.69 2.041 0.996 0.012   4.32 3.673 1 0 

1.1 0.542 0.816 0.341   2.74 2.089 0.996 0.011   4.37 3.721 1 0 

1.15 0.582 0.832 0.316   2.78 2.137 0.997 0.01   4.42 3.769 1 0 

1.2 0.622 0.847 0.294   2.83 2.185 0.997 0.008   4.46 3.817 1 0 

1.25 0.663 0.86 0.272   2.88 2.233 0.998 0.007   4.51 3.865 1 0 

1.3 0.705 0.873 0.251   2.93 2.281 0.998 0.006   4.56 3.913 1 0 

1.34 0.747 0.884 0.232   2.98 2.329 0.998 0.006   4.61 3.961 1 0 

1.39 0.789 0.895 0.214   3.02 2.377 0.999 0.005   4.66 4.009 1 0 

1.44 0.833 0.905 0.197   3.07 2.425 0.999 0.004   4.7 4.057 1 0 

1.49 0.876 0.914 0.181   3.12 2.473 0.999 0.004   4.75 4.105 1 0 

1.54 0.92 0.922 0.166   3.17 2.521 0.999 0.003   4.8 4.153 1 0 

1.58 0.965 0.93 0.152   3.22 2.569 0.999 0.003           

Plots of the results for F and its derivatives as functions of η are also provided below. 
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Figure 3 Plot of Stream Function together with its First and Second Derivatives 

 

 

Figure 4 Plot of Stream Function only 
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Figure 5 Plot of first derivative of Stream Function only 

 

 

Figure 6 Plot of second derivative of Stream Function only 

From the foregoing analysis, we can make the following inferences 

 Near the wall, F increases at a very slow rate with η. This rate increases parabolically until it becomes linear at 
larger values of η. 

 The first derivative of F initially increases linearly with η at lower values of η. The rate then decreases 
parabolically until F’ eventually approaches a constant value of 1 as η increases. 

 The second derivative of F becomes zero for large values of η. 
 For plane stagnation flow, the similarity variable, η is defined as 
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𝜂 = 𝑦√
𝑘

𝜈
 

 This shows that the similarity variable does not depend on the streamwise direction 
 Also, the velocity components are defined as 

𝑢 = 𝑘𝑥𝐹′ 

𝑣 = −√𝜈𝑘𝐹 

 Where ν is the kinematic viscosity and k is an arbitrary constant representing strain rate 
 It is obvious from the above definition that the v-component of velocity depends only on the function F, and 

thus, increases with η at a slower (parabolic) rate for small values of η i.e., near the wall. This rate increases 
slightly and becomes linear for larger values of η. 

 The u-component of velocity depends on x and F’. This means that for large values of η, u will depend only on 
the streamwise direction, x since F’ approaches unity. 

6. Conclusion 

In this study, we have successfully developed a numerical solution for the plane stagnation point flow using the fourth 
order Runge-Kutta approximation. The solution required numerical integration of the coupled first order ODEs with 
prescribed initial conditions. Our findings demonstrate that the proposed numerical approach effectively captures the 
key characteristics of the stagnation point flow, including the velocity distributions. 

Overall, the numerical solution presented in this study offers a valuable tool for understanding and predicting the 
complex behavior of plane stagnation point flows. Future work can extend this approach to more complex geometry 
and boundary conditions, further enhancing its applicability in engineering and scientific research. 
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