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Abstract 

In the neurological field, predicting Cerebellar Ataxia (CA) is based on analyzing gait values of human actions. Analyzing 
Gait (AoG) can potentially guide effective treatment strategies. This study aimed to create a machine-learning model for 
predicting AoG using gait patterns indicative of pre-AoG conditions. During the execution of designed walking tasks to 
provokeAoG, accelerometers were attached to the lower back of 21 subjects as they performed 12 different walking 
positions to collect acceleration impulses. The participants engaged in walking exercises for one minute at 12 different 
walking speeds on a split-belt treadmill, ranging from 0.6 to 1.7 m/s in 0.1 m/s increments. The speed sequence was 
randomized and concealed from the subjects to minimize fatigue effects. Prior research studies have surveyed machine-
learning algorithms such as support vector machine (SVM) and k-nearest neighbors (KNN). These algorithms 
demonstrate strong performance, especially when the dataset is trivial, and the classification is binary. SVM, KNN, 
decision trees, and XGBoost algorithms were utilized in the proposed study on the CA dataset. Our findings revealed 
that the AdaBoost algorithm, with its high precision, offers a more precise categorisation of the severity of CA disease, 
instilling confidence in the study's findings. 

Keywords: Medical imaging; Deep learning; Object detection; Classification; Cervical spine fracture; Convolutional 
Neural Network (CNN) 

1. Introduction

While the motor symptoms of cerebellar ataxia (CA) are widely recognized, numerous non-motor symptoms have also 
been recognized [1]. Irregular actions and the inability to suppress urges are  

Characteristic features of the psychiatric disorders referred to as impulse control disorders (ICDs). Neurology is a well-
established area of medical specialization [2], focusing on understanding how the brain directs the body's responses to 
various events. This research allows us to identify activity irregularities and assess the nervous system's functionality. 
Disruptions in activity rhythm can contribute to neurological diseases. Neurosurgery primarily addresses brain, spine, 
and nerve damage, offering treatments for various neurological conditions. Detecting activity patterns [3] in the medical 
field poses challenges, requiring careful observation of patients' movements to identify conditions [4]. Identifying and 
pinpointing issues in the early stages of neurological diseases can be particularly challenging. Any lapses in medical care 
could potentially result in a patient's death. In cross-sectional studies, the prevalence of ICDs and related conditions has 
been reported to range from 15% to 20% [5–7]. The annual incidence is estimated to be around 10% [8,9], and after 
five years from the onset of the disease, the overall incidence rises to over 50% [10]. These issues may also impact those 
who have had Parkinson's disease (PD) for more than five years. 
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Neurologists assess the complexity of nervous system disorders to determine their severity, guiding treatment 
decisions. The brain's capacity is essential for all human activities. Activity patterns reflect the severity of the CA 
condition. Recent advancements in neurosurgical critical care and neuroimaging technologies enable early treatment 
of patients with minimally invasive techniques, although managing the condition and ensuring successful treatment can 
be challenging and life-threatening. An interdisciplinary team [11] comprising various neurospecialists is dedicated to 
this goal. One of the cerebellar patients' most prevalent and incapacitating symptoms is gait dysfunction, known as 
analysis of gait (AoG) [12]. AoG is characterized by "a brief, episodic lack of forward motion or a significant decline 
despite the intention to walk" [13]. It is more prominent during turning, navigating through confined spaces, and 
initiating walking. AoG significantly restricts mobility, increases the risk of falling, and reduces the quality of life [14–
16].As medical treatments advanced rapidly, the range of diseases also expanded. These advancements in medicine 
have elevated societal standards. Cerebellar Ataxia (CA), a neurological condition, leads to improper coordination of 
body movements. Muscle strength affects coordination issues during exercises. When there is a compromise in the 
magnitude and synchronization of limb movements to maintain posture, coordination problems occur. 

They experience physical imbalance and struggle to carry out tasks. Early detection of the condition simplifies 
treatment. Interpreting ensembles may pose greater challenges. Even the best ideas may not always convince decision-
makers. Occasionally, even the most brilliant concepts are rejected by the intended audience. Finally, ensembles are 
more costly to develop, train, and implement. The healthcare sector greatly benefits from artificial intelligence [17]. By 
accurately predicting the disease, it aids in saving the lives of numerous people. Various algorithms are applied to the 
activity data and thoroughly scrutinize their results. The analysis outcome is reliable and accurate for forecasting. For 
the necessary disease prediction analysis, we utilize the support vector machine (SVM) [18], decision tree (DT) [19], 
and k-nearest neighbor (KNN) [20] algorithms. 

We employ the ensemble technique to enhance the precision of predictions from machine-learning methods [21]. The 
combined predictive ability of these features has not been extensively studied. Only three studies [22] have reported 
research and patient-level forecasts. In all three studies, researchers utilized logistic regression with neuro-clinical and 
genetic data and then used the receiver operating characteristic (ROC) curve to assess the prediction performance (ROC 
AUC). The absence of cross-validation or a replication cohort in any of these experiments affected the accuracy of 
performance outcomes [23]. 

We utilized machine-learning approaches to predict neuro-clinical data. We used two longitudinal cohorts to train and 
cross-validate the obtained models and assess their applicability to other cohorts. With information on the patient’s 
clinical history and genotyping, we aimed to estimate the risk of ICDs at the next appointment. Ensemble approaches 
combine multiple models rather than relying solely on one, aiming to increase the accuracy of predictions. Integrated 
models significantly enhance the accuracy of the findings, leading to the increasing prominence of ensemble approaches 
in machine learning. 

2. Related work 

Rukhsar S [24]. This section discovers various procedures for detecting ataxia patients using gait characteristics. The 
aim was to investigate the feasibility of using gait to i) identify individuals with ataxia-related gait characteristics (threat 
prediction) and ii) assess the severity of ataxia. They collected 155 videos of 89 individuals, including 24 individuals 
with controlled spinocerebellar ataxia (SCAs) and 65 individuals with SCAs (or at risk of developing them), performing 
the gait task of the Scale for the Assessment and Rating of Ataxia (SARA) at 11 clinical locations in eight states across 
the United States. In addition, they devised a strategy for isolating the subjects from their environment. They built 
several features to record aspects of gait, such as step width, step length, speed, swing, and stability. Their recommended 
method for predicting risk is 83.06% accurate and has an F1 score of 80.23%. Further, their future method for 
estimating severity has a mean absolute error (MAE) of 0.6225 and a Pearson’s-correlation-coefficient-score (PCCS) of 
0.7268, both statistically significant results. Their proposed method maintained superior results when tested on data 
from non-training sources. Moreover, the feature-importance evaluation shows that their proposed method correlates 
higher ataxia severity with broader steps, slower walking speed, and more instability. 

Zhang et al. [25], ataxia is a symptom that occurs when the human body experiences difficulties with balance and 
coordination. While there are various possible internal causes of ataxia, the condition is often diagnosed based on 
external characteristics and the physician's clinical experience. In their study, they utilize a contactless sensing method 
to distinguish cases of sensory ataxia from cases of cerebellar ataxia. They collect data on Romberg's tests and gait 
analysis using a microwave sensing system, then preprocessing and training the method using machine-learning 
techniques. Considering time series parameters for Romberg's test, all three methods achieve 96% or better accuracy 
in this task. For gait identification, Principal Component Analysis (PCA) is employed to reduce dimensionality, with 
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accuracy rates of 97.8%, 98.9%, and 91.1% for back-propagation neural network, support vector machine (SVM), and 
random forest (RF), respectively. 

Shanmuga Sundari M et al. [26], Difficulty walking is a common symptom of various debilitating neurological and 
orthopedic conditions. Accelerometers enable the accurate simulation of gait patterns, but they produce a large volume 
of data that can be challenging to analyze. This study evaluated various techniques for clinical data reduction and the 
categorization of resulting data. Using data collected from 43 subjects (20 healthy subjects, 23 ataxic subjects), resulting 
in 418 sequences of normal gait patterns, a maximum accuracy of 98% was achieved using an RF classifier pre-
processed by t-distributed stochastic neighbor segmentation to distinguish between healthy individuals and those with 
an ataxic gait. 

Yang Xet al. [27], Researchers have utilized motion sensor information to analyze the walking patterns of individuals 
with neurological disorders, such as hereditary ataxias (HA), over time. Data was collected from 14 individuals with 
hereditary ataxias (HA) and 14 healthy individuals using iPhone motion sensors attached to their ankles. The aim was 
to determine the minimum required gait traits for effective and less invasive recognition of HA patients. To reduce the 
number of gait characteristics and sensor systems, two approaches were developed: i) implementing a local-minimum 
significant peak requirement to determine the start of each step, resulting in a 10-stride frame from which 56 features 
were derived, and ii) employing a searching method primarily based on the hill climbing algorithm. The main findings 
were that using two gait sequences, the k-nearest neighbor (KNN) and multi-layer perceptron (MLP) methods achieved 
a 96% classification performance. For the MLP method, only variations from the right ankle sensor were necessary, thus 
reducing intrusion. 

J. V. Chandra et al. [28], In this study, accelerometric data is utilized to optimize DL convolutional neural network (CNN) 
systems, which can then distinguish between normal and ataxic gait. The dataset comprises 860 signal segments from 
16 ataxic subjects and 19 control subjects, with the average ages of the two groups being 38.6 and 39.6 years, 
respectively. The technique involves simultaneously decomposing accelerometric data captured at multiple body 
locations and sampling at 60 Hertz into their frequency components. The DL algorithm utilizes all parameters between 
0 and 30 Hertz. Conventional techniques such as SVM, Bayesian methodologies, and two-layer neural networks, with 
characteristics evaluated based on relative power in specified frequencies, are among those whose results are compared 
with those achieved in this classification experiment. The results indicate that selecting the right locations for the 
sensors can increase accuracy from 81.2% at the foot to 91.7% at the spine. Furthermore, an accuracy of 95.8% was 
achieved by integrating the input data using a five-layer DL algorithm. However, the model does poorly when dealing 
with limited training samples and imbalanced data. Also, effective feature weight optimization is required for multi-
label classification and importance selection during training. Thus, the current approaches fail to achieve good 
accuracies. To address this research limitation, the following research methodology is presented. 

W. Jamal and S. Das [10] utilized brain connectivity for supervised learning in autism spectrum disorder classification, 
which has served as a significant milestone for such classifications. A. Abraham and F. Pedregosa [29] ingeniously 
combined neuroimaging advancements with machine learning using a sci-kit. 

The classification of anxiety disorders in social issues has been advanced by the use of BCIS by F. Liu, W. Guo, and Y. 
Wang, with W. Wang pushing the BCIS further [8]. The estimations and predictions in autism spectrum disorders for 
youth with ANN have taken the research from [30] to a whole new level, led by A. Narzisi and F. Muratori [31]. The 
theory pitfalls and guidelines for imaging data of psychological patients with disorders are well-explained, showcased 
by P. Kassraian Fard and C. Matthis [32]. 

3. Datasets and preprocessing  

3.1. Data sources 

Here, we will discuss the public benchmark dataset used in this research and our data augmentation strategy, which 
aims to address the common issue of data bias in medical datasets. 

3.2. The dataset 

The dataset created by Rueangsirarak et al. comprises four classes and 45 walking motions, including 10 healthy, 4 with 
joint problems, 18 with muscle weakness, and 13 with neurological defects. These motions were performed by 45 
subjects aged between 61 and 91 years old. Three medical doctors diagnosed the subjects into one of the four classes. 
Standard clinical tests were used by medical experts for screening and approving voluntary applicants, ensuring they 



International Journal of Science and Research Archive, 2024, 12(02), 873–882 

876 

could walk without assistance and had no medical disorder history that could affect walking. Further details can be 
found in possible. 

Using a randomly sampled and population-based approach, we selected five male and 40 female subjects from the list 
of approved applicants. The gender bias reflects the bias present among voluntary applicants in this community. The 
Motion Analysis optical motion capture system, which consists of fourteen Raptor-E optoelectronic cameras sampling 
at 100 Hz, was used to collect the data. 

3.2.1. Data Augmentation 

The dataset used in this study presents tasks due to its multiple, small-scale, and biased classes of disorders. The number 
of training samples significantly influences the generalization ability of DL models. To improve the generalization of the 
DL model, augmentation techniques such as random scaling, noise addition, sign inversion, and motion reversal were 
applied to produce more training samples for cerebral palsy prediction. However, the techniques mentioned above only 
address intra-class variations, which means that the augmented data may not effectively alleviate the inter-class 
similarity problem, as multiple class labels must be considered. To address this, we apply the synthetic data 
augmentation method mix-up, resulting in a four times larger unbiased dataset. This dataset size is reasonable for our 
model learning, preventing overfitting and achieving good performance in our experiments. 

3.2.2. Process flow of disease prediction 

This paper aims to present a revolutionary disease pre-diction method with five key phases, including 

• Data preprocessing, 
• Noisy data reduction, 
• extract feature, 
• select the proper feature, and 
• Final classification. 

3.3. Challenges and Considerations 

Predicting neurological diseases like cerebellar ataxia through impaired gait analysis presents several challenges. 
Accurately detecting and analyzing gait abnormalities requires sophisticated technology and expertise in neurology and 
biomechanics. The variability in symptoms and progression of cerebellar ataxia adds complexity, as no single gait 
parameter can reliably predict the disease. Additionally, distinguishing between cerebellar ataxia and other conditions 
with similar symptoms is challenging, requiring comprehensive clinical assessments. In addition, standardizing gait 
analysis protocols across different settings is difficult due to variations in equipment, environmental conditions, and 
patient characteristics. To overcome these obstacles, multidisciplinary cooperation, technological developments, and 
extensive follow-up research are required to enhance diagnostic precision and optimize predictive models. 

4. Machine learning techniques  

Neurological disease prediction through impaired gait analysis involves machine-learning techniques, particularly 
focusing on foot position in cerebellar ataxia. Based on labelled datasets, supervised learning algorithms like Support 
Vector Machines (SVM), Random Forests, and Gradient Boosting Machines can classify gait patterns as indicative of 
cerebellar ataxia or healthy controls. Deep learning models such as Convolutional Neural Networks (CNNs) can extract 
features from gait images or video sequences, capturing subtle variations in foot position and movement patterns. 
Transfer learning allows fine-tuning pre-trained models using cerebellar ataxia-specific data, while ensemble methods 
like bagging and boosting combine multiple models to improve prediction accuracy. Unsupervised learning techniques 
like Isolation Forest or One-Class SVM can detect anomalies in gait data, identifying deviations from normal patterns 
indicative of cerebellar ataxia. Moreover, model interpretability methods like LIME and SHAP offer insights into the 
contribution of specific gait features to the prediction, aiding clinicians in understanding and validating model decisions. 
Longitudinal analysis using Hidden Markov Models (HMMs) or Long Short-Term Memory Networks (LSTMs) can track 
disease progression over time, predicting future states based on past gait observations. Integrating these machine 
learning techniques with clinical expertise enhances the accuracy and reliability of neurological disease correctness 
prediction using impaired gait analysis for cerebellar ataxia. 

4.1. Convolutional Neural Networks (CNNs) 

In predicting neurological diseases like cerebellar ataxia through impaired gait analysis focusing on foot position, 
Convolutional Neural Networks (CNNs) play a crucial role. CNNs excel in extracting spatial features from gait images or 
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video sequences, making them well-suited for analyzing foot position variations and movement patterns. By processing 
gait data at multiple levels of abstraction, CNNs can capture intricate details that might indicate abnormalities 
associated with cerebellar ataxia. These networks can learn to recognize subtle differences in foot positioning, aiding in 
identifying characteristic gait patterns indicative of the disease. Moreover, CNNs can adapt to different scales and 
orientations of gait images, making them robust to variations in the camera under different angles or patient 
movements. Their ability to automatically learn relevant features from raw data eradicates the need for physical feature 
engineering, streamlining the prediction process. By integrating CNNs into the analysis pipeline, researchers and 
clinicians can achieve moderate, accurate and efficient neurological disease prediction using impaired gait analysis for 
cerebellar ataxia. 

4.2. Emerging trends: Exploring beyond CNN’s  

Exploring beyond CNNs in neurological disease prediction through impaired gait analysis for foot position in cerebellar 
ataxia reveals several emerging trends. One such trend is the integration of graph neural networks (GNNs), which can 
predict and model the difficultrelations between different body parts during gait. GNNs enable the representation of 
gait as a graph structure, capturing dependencies between joints and their movements, which could provide deeper 
insights into cerebellar ataxia-related abnormalities. Another promising trend is the use of attention mechanisms, 
particularly in recurrent neural networks (RNNs) or transformer models. Attention mechanisms allow models to focus 
on relevant regions or time steps within gait sequences, potentially improving the detection of subtle gait anomalies 
indicative of cerebellar ataxia. 

Furthermore, federated learning is gaining traction in this domain, enabling collaborative model training across 
multiple healthcare institutions while preserving patient privacy. This approach facilitates the development of more 
robust and generalized accurate prediction models by leveraging diverse datasets. Additionally, incorporating 
multimodal data, such as combining gait analysis with other neuroimaging modalities like MRI or EEG, is becoming 
increasingly prevalent. Integrating diverse data sources can provide a more comprehensive understanding of cerebellar 
ataxia and enhance predictive performance. 

Lastly, explainable AI techniques are gaining importance to enhance the interpretability of predictive models. Methods 
such as attention visualization and saliency mapping can provide insights into which gait features contribute most to 
the prediction of cerebellar ataxia, aiding clinicians in understanding and trusting the model's decisions. By embracing 
these emerging trends, researchers can advance the accuracy, interpretability, and generalization of neurological 
disease prediction using impaired gait analysis for cerebellar ataxia, ultimately improving patient care and outcomes. 

4.3. Understanding the Training Process 

To differentiate between pre-AoG gait and regular walking, boosting pruned C4.5 trees was chosen because it 
outperformed other strategies for detecting AoG. Before being fed into the classifier, the features were normalized to 
the range [0,1]. To distinguish pre-AoG from regular walking, only features from the pre-AoG and phases of regular 
walking were used in themodel training. We assessed and contrasted the model's performance in two different 
schemes—one patient-dependent and the other patient-independent. A 10-fold validation strategy was used for every 
subject in scheme 1. In each fold, 30% of the dataset was exploited for the training set and 70% for the testing set. 

4.4. The Future of Deep Learning in Ataxia 

The future of deep learning in neurological disease prediction using impaired gait analysis for foot position in cerebellar 
ataxia holds exciting prospects for advancing diagnosis and treatment. One key direction is the integration of 
multimodal data sources, combining gait analysis with other physiological measurements such as brain imaging or 
genetic data. This holistic approach can provide a more comprehensive understanding of cerebellar ataxia and improve 
the accuracy of predictions. 

Furthermore, there's a growing emphasis on developing more interpretable deep learning models. Techniques such as 
attention mechanisms and explainable AI methods will be increasingly important in elucidating how neural networks 
arrive at their predictions, making the models more trustworthy for clinicians. Another promising avenue is the 
application of reinforcement learning. By incorporating feedback mechanisms, reinforcement learning can adjust gait 
analysis protocols or treatment strategies based on patient response, leading to personalized and optimized 
interventions. 

Moreover, the future will likely see advancements in wearable devices for continuous gait monitoring in real-world 
settings. Deep learning models trained on data from these devices could provide valuable insights into disease 
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progression and treatment effectiveness, enabling early intervention and personalized management plans. Additionally, 
federated learning approaches will continue to gain traction, allowing models to be trained across distributed 
healthcare centers without sharing sensitive patient data. This collaborative approach can improve model robustness 
and generalization while respecting patient privacy. 

Lastly, advancements in computational hardware and algorithms will enable the development of more complex and 
efficient deep-learning architectures tailored specifically for gait analysis in cerebellar ataxia. This includes models that 
can handle longitudinal data, temporal dependencies, and dynamic changes in gait patterns over time. Overall, the future 
of deep learning in neurological disease prediction using impaired gait analysis for cerebellar ataxia is promising, with 
potential benefits for early detection, personalized treatment, and improved patient outcomes. 

5. Performance Evaluation of Various Algorithms 

Assessing the effectiveness of deep learning models in ataxia analysis is crucial for accurately gauging their value and 
comparing them to alternative approaches. This section delves into the metrics employed for such evaluations, presents 
the attained results alongside comparisons, and ultimately provides a comprehensive overview of the impact of deep 
learning in this particular domain. Various metrics serve as vital indicators for analyzing the efficiency of deep learning 
models for ataxia. 

• Accuracy: Reflects the overall rate of correct predictions across segmentation and classification tasks.  
• Precision: Captures the percentage of classified fracture accurately assigned to the predicted quality category.  
• Recall: Indicates the proportion of actual fracture of a specific quality category correctly identified by the model.  
• F1-score: Blends precision and recall into a single metric, offering a balanced view of the model's performance.  

Intersection over Union (IoU): Specifically for segmentation tasks, IoU measures the overlap between predicted and 
ground-truth segmentation masks, evaluating how well the model identifies individual fractures. 

A dataset on neurological diseases was utilized in this study. Employing machine-learning algorithms, the study 
achieved 99.6% accuracy in identifying activity patterns indicative of neurological disease. Specifically, the cerebellar 
ataxia (CA) disease dataset yielded improved predictions using AdaBoost. Other metrics, such as root mean squared 
and error values, were also used to generate this forecast. Ultimately, exploring various neural network techniques 
improved prediction outcomes. Notably, AdaBoost stood out in the comparative analysis. Its strength lies in its ability 
to detect CA disease early, providing valuable benefits to physicians. 

Precision = 
TP

TP+FP
 -----Eq (1) 

Recall = 
TP

TP+FN
  -----       Eq (2) 

F1 Score = 2 × 
 P.R

 P+R
 ---- Eq (3) 

Table 1 Comparison of results with Baselines on Precision, Recall, F1-Measure, and AUC 

Metric Network Healthy Joint 

Problem 

Muscle Weakness Neurological 

Defect 

Average 

 

Precision 

3DJP-CNN 1.00 0.60 0.89 0.92 0.85 

3DRJDP-CNN 1.00 0.75 0.89 0.92 0.89 

2s-CNN 1.00 0.75 0.95 1.00 0.92 

 

Recall 

3DJP-CNN 0.95 0.75 0.94 0.85 0.86 

3DRJDP-CNN 1.00 0.75 0.94 0.85 0.89 

2s-CNN 1.00 0.75 1.00 0.92 0.92 

 

F1- 

3DJP-CNN 0.95 0.67 0.92 0.88 0.85 

3DRJDP-CNN 1.00 0.75 0.92 0.88 0.89 
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Measure 2s-CNN 1.00 0.75 0.97 0.96 0.92 

 

AUC 

3DJP-CNN 0.95 0.85 0.94 0.91 0.91 

3DRJDP-CNN 1.00 0.86 0.94 0.91 0.93 

2s-CNN 1.00 0.86 0.98 0.96 0.95 

 

 

Figure 1 Results with Baselines on Precision, Recall, F1-Measure, and AUC 

 

 

Figure 2 Prediction accuracy using Machine learning algorithms 
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Table 2 Ensemble learning for using Neurological disease prediction for foot positioning cerebellar ataxia in the 
proposed network 

Sl. No. Algorithm Prediction Accuracy 

1 SVM 93.5 

2 Naïve Bayes 93.8 

3 Logistic regression 94.6 

4 Ada Boost 95.6 

5 Ensemble Learning  95.98 

6. Challenges and Future Direction  

6.1. Challenges 

6.1.1. Data Quality and Quantity 

Obtaining high-quality gait data, especially in real-world settings, can be challenging. Additionally, datasets for 
cerebellar ataxia may be limited in size, making it difficult to train accurate prediction models. 

6.1.2. Feature Extraction and Selection 

Identifying the most relevant features from a challenge. It requires a deep understanding of both the disease and gait 
characteristics. 

6.1.3. Class Imbalance 

Imbalanced datasets, where significantly more samples from one class (e.g., healthy individuals) than others, can lead 
to biased models. Addressing this imbalance is crucial for accurate predictions. 

6.1.4. Generalization 

 It is essential to develop models that can generalize well across different populations and conditions. The variability in 
gait patterns among individuals with cerebellar ataxia adds complexity to this challenge. 

6.2. Future Directions 

6.2.1. Advanced Machine Learning Techniques 

Explore advanced machine learning techniques, such as deep learning, ensemble methods, and transfer learning, to 
improve the accuracy of prediction models. These techniques can more effectively handle complex patterns in gait data. 

6.2.2. Longitudinal Studies 

Conduct longitudinal studies to collect gait data over time, allowing for a better understanding of disease progression 
and more accurate predictions. 

6.2.3. Multimodal Data Fusion 

Integrate data from multiple sources, such as gait analysis, neuroimaging, and genetic information, to enhance 
prediction accuracy and gain deeper insights into the disease. 

6.2.4. Personalized Medicine 

 Move towards personalized prediction models that account for individual variations in gait patterns and disease 
progression. This approach can lead to more tailored treatment plans and interventions. 
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6.2.5. Real-time Monitoring 

Develop wearable devices and mobile applications for real-time monitoring of gait patterns. This could enable early 
detection of changes in foot position and prompt intervention, improving patient outcomes. 

6.2.6. Collaboration and Data Sharing 

Foster collaboration among researchers and encourage data sharing to create larger and more diverse datasets. This 
would facilitate the development of robust prediction models and accelerate progress in the field. 

7. Conclusion 

To diagnose cervical ataxia in the future, addressing issues with data diversity, model interpretability, imbalanced 
datasets, and clinical integration will be necessary. It is anticipated that ongoing, reliable research and technological 
developments will result in increasingly complex models and comprehensive strategies that improve ataxia patient care 
and diagnostic skills. 

Compliance with ethical standards 

Disclosure of conflict of interest 

No conflict of interest to be disclosed. 

References 

[1] Xia T, Yang J, Chen L. Automated semantic segmentation of bridge point cloud based on local descriptor and 
machine learning. Autom Constr. 2022; 133:103992. 

[2] Gunjan VK, Vijayalata Y, Valli S, et al. Machine learn- ing and cloud-based knowledge graphs to recognise suicidal 
mental tendencies. ComputIntell Neurosci.2022;2022:1–10. 

[3] Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief- 
ingsBioinf. 2018 Nov;19(6):1236–1246. 

[4] Adnan M, Kalra S, Cresswell JC, et al. Federated learning and differential privacy for medical image analysis. Sci 
Rep. 2022 Dec;12(1):1–10. 

[5] Hao M, Li H, Luo X, et al. Efficient and privacy-enhanced federated learning for industrial artificial intelligence. 
IEEE Trans Ind Informat. 2020 Oct;16(10):6532–6542. 

[6] Liu Y, Yu JJQ, Kang J, et al. Privacy-preserving traffic flow prediction: A federated learning approach. IEEE Internet 
Things J. 2020 Aug;7(8):7751–7763. 

[7] Wu Q, He K, Chen X. Personalized federated learning for intelligent IoT applications: a cloud-edge based 
framework, IEEE Open J Comput Soc. 2020;1:35–44. 

[8] Zhao Y, Liu H, Li H, et al. Semi-supervised federated learning for activity recognition. arXiv:2011.00851.2020. 

[9] Shanmuga Sundari M, Sudha Rani M, Ram KB. Acute leukaemia classification and prediction in blood cells using 
convolution neural network. International Conference on Innovative Computing and Communications. 
Singapore: Springer; 2023. p. 129–137. 

[10] Tharini VJ, Shivakumar BL. An efficient pruned matrix-aided utility tree for high utility itemset mining from a 
transactional database. Int J Intell Sys Appl Eng. 2023;11(4s):46–55. 

[11] Wu Q, Chen X, Zhou Z, et al. Fedhome: cloud-edge-based personalised federated learning for in-home health 
monitoring. IEEE Trans Mobile Comput., Early Access. 2020 Dec 16. doi:10.1109/TMC.2020.3045 266. 

[12] Rieke N, et al. The future of digital health with federated learning. Npj Digit Med. 2020 Dec;3(1):1–7.  

[13] Kumar R, et al. Blockchain-federated-learning and deep learning models for COVID-19 detection using CT 
imaging. IEEE Sensors J. 2021 Jul;21(14):16301–16314.  

[14] Warnat-Herresthal S, et al. Swarm learning for decen- tralized and confidential clinical machine learning. Nature. 
2021;594(7862):265–270. 



International Journal of Science and Research Archive, 2024, 12(02), 873–882 

882 

[15] Sundari MS, Nayak RK. Process mining in healthcare systems: a critical review and its future. Int J Emerging 
Trends Eng Res. 2020;8(9):5197–5208. 

[16] Yang Z, Zhong S, Carass A, et al. Deep learning for cerebellar ataxia classification and functional score regression. 
In: Wu G, Zhang D, Zhou L, editors. Machine learning in medical imaging. Cham: Springer; 2014. p. 68–76. 

[17] Chang Z, et al. Accurate detection of cerebellar smooth pursuit eye movement abnormalities via mobile phone 
video and machine learning. Sci Rep. 2020 Dec;10(1):1–10.Kashyap B, Pathirana PN, Horne M, et al. Quantitative 
assessment of speech in cerebellar ataxia using magnitude and phase-basedcepstrum. Ann Biomed Eng. 2020 
Apr;48(4):1322–1336. 

[18] Tran H, Pathirana PN, Horne M, et al. Quantitative evaluation of cerebellar ataxia through automated assessment 
of upper limb movements. IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):1081–1091. 

[19] Shanmuga Sundari M, Jadala VC. Improved performance analysis for cerebellar ataxia disease classification using 
AdaBoost. NeuroQuantology. 2022;20(6):9488–9497. 

[20] Lee J, Kagamihara Y, Kakei S. A new method for functional evaluation of motor commands in patients with 
cerebellar ataxia. PLoS ONE. 2015 Jul;10(7): e0132983. 

[21] Hohenfeld C, et al. Application of quantitative motor assessments in Friedreich ataxia and evaluation of their 
relation to clinical measures. Cerebellum. 2019 Oct;18(5):896–909. 

[22] Chen Y, Ghannam R, Heidari H. Air quality monitoring using portable multi-sensory module for neuro-logical 
disease prevention. 2019 UK/China Emerging Technologies (UCET), 2019 Aug 21, IEEE, p. 1–4. 

[23] Rukhsar S. Discrimination of multi-class EEG signal in phase space of variability for epileptic seizure detection 
using error-correcting output code (ECOC). Int J Inf Technol. 2018;14(2):1–13. 

[24] Nasser IM, Al-Shawwa M, Abu-Naser SS. Artificial neural network for diagnosing autism spectrum disorder.Int J 
Acad Inf Syst Res (IJAISR). 2019;3(2):930–933. 

[25] Shanmuga Sundari M, Sudha Rani M, Kranthi A. Detect traffic lane image using geospatial LiDAR data point clouds 
with machine learning analysis. In: Intelligent system design. Singapore: Springer; 2023. p. 217–225. 

[26] Yang X, Member S. Activity pattern mining for health- care. IEEE Access. 2020;8:56730–56738. doi:10.1109/ 
ACCESS.2020.2981670. 

[27] J. V. Chandra, G. Ranjith, A. Shanthisri, et al, A framework for implementing machine learning algorithms using 
data sets, International Journal of Innovative Technology and Exploring Engineering (IJITEE). 2019 
Oct;8(11):155–160. doi:10.35940/ijitee.K1263.0981119. 

[28] Ker JI, Wang Y, Hajli MN, et al. Deploying lean in healthcare: evaluating information technology effectiveness in 
US hospital pharmacies. Int J Inf Manage. 2014;34(4):556–560. 

[29] Lin HT, Li L. Support vector machinery for infinite ensemble learning. J Mach Learn Res. 2008;9:285–312.  

[30] Shanmuga Sundari M, Samyuktha P, Kranthi A, Das S. Evaluating performance on COVID-19 tweet sentiment 
analysis outbreak using support vector machine. In: S Das, editor. Smart, intelligent computing and applications, 
Vol. 1, Singapore: Springer; 2022. p. 151–159. 

[31] Lu H, Gao H, Ye M, et al. A hybrid ensemble algorithm combining AdaBoost and genetic algorithm for cancer 
classification with gene expression data. IEEE/ACM Trans Comput Biol Bioinforma. 2021;18(3):863–870. 
doi:10.1109/TCBB.2019.2952102 


