

eISSN: 2582-8185 Cross Ref DOI: 10.30574/ijsra Journal homepage: https://ijsra.net/

(REVIEW ARTICLE)

η – Dual of generalized triple sequence space

Mohd Javed * , Seraj Ahemed Khan, Insha Sami and Akanksha Pandey

Department of Mathematics, Shibli National College, Azamgarh, Uttar Pradesh, India.

International Journal of Science and Research Archive, 2024, 12(02), 1420–1425

Publication history: Received on 19 May 2024; revised on 26 July 2024; accepted on 29 July 2024

Article DOI[: https://doi.org/10.30574/ijsra.2024.12.2.1189](https://doi.org/10.30574/ijsra.2024.12.2.1189)

Abstract

In this paper, we introduce bounded, convergent, null and eventually alternating triple sequence spaces, i.e.,3 $_{l_\infty}$,3 $_c$, 3 $_{c_o}$ and 3_{σ} respectively. Then we find η -dual of order r (0< $r \le 1$) of these spaces. Further, we check whether they are perfect or not.

Keywords: Sequence spaces; Kothe Toeplitz duals; α – *duals*; η – *duals*.

1. Introduction

Let ω denote linear space of all sequences and X is any subset of ω . Then Kothe –

Toeplitz duals of X or α -dual of X is defined in [8] as

$$
X^{\alpha} = \{ (a_n) \in \omega : \sum_n |a_n x_n| < \infty \text{ for all } (x_n) \in X \}.
$$

Kothe –Toeplitz [1, 3, 4, 6, 10] gives idea of dual sequence space whose main results are with α -dual. Chandra and Tripathi [10] have generalized the notation of η -duals of order r> 1. Later, Ansari and Gupta [2] worked on it and generalized the notation of Kothe and Toeplitz duals of sequence spaces by introducing the concept of η -duals of order $0 < r \leq 1$.

Let N denote the set of natural numbers. A triple sequence of complex numbers is a function x: $N \times N \times N \xrightarrow{yields} C$. We denotes triple sequence by (x_{mnp}) . In this paper, sum without limits stand from 1 to ∞. Let 3_ω denote space of all triple sequence. Then we define the spaces $3_{l_\infty},3_{l_r},3_c$ and 3_{c_0} as

$$
3_{l_r} = \{(a_{mnp} \in 3_{\omega}:\Sigma_m \Sigma_n \Sigma_p | a_{mnp}|^r < \infty\};
$$

$$
3_{l_{\infty}} = \{(a_{mnp}) \in 3_{\omega}: \sup_{m,n,p} | a_{mnp}| < \infty\};
$$

$$
3_c = \{(a_{mnp}) \in 3_{\omega} : a_{mnp} \to l \text{ as } \min(m, n, p) \to \infty \text{ for some } l \in C\};
$$

$$
3_{c_0} = \{ (a_{mnp}) \in 3_{\omega} : a_{mnp} \to 0 \text{ as } min(m, n, p) \to \infty \}.
$$

Clearly, from the above expression, we have

$$
3_{c_0} \subseteq 3_c \subseteq 3_{c_\infty}
$$

^{*}Corresponding author: Mohd Javed

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of th[e Creative Commons Attribution Liscense 4.0.](http://creativecommons.org/licenses/by/4.0/deed.en_US)

Let E be any non empty subset of 3ω . Then we define η-dual of E of order r, for

$$
0 < r \le 1 \, \text{as}
$$
\n
$$
E^{\eta} = \left\{ (a_{mnp}) \in 3_{\omega} : \sum_{m} \sum_{n} \sum_{p} \left| a_{mnp} x_{mnp} \right|^{r} < \infty \right\},
$$

Where $(x_{mnp}) \in E$. Any non empty subset E of 3_{ω} is said to be perfect if $E^{\eta\eta}$ =E.

2. Results

2.1. Lemma 2.1

The following statements hold

- E^{η} is a linear subspace of 3_ω for every E⊆ 3_ω
- If $E \subseteq F$, then $F^{\eta} \subseteq E^{\eta}$.
- $E \subseteq E^{\eta\eta}$

2.1.1. Theorem 2.1

$$
(3_{l_r})^{\eta} = 3_{l_{\infty}} \text{and} (3_{l_{\infty}})^{\eta} = 3_{l_r}
$$
. The spaces $3_{l_{\infty}}$ and 3_{l_r} are perfect for $1 \ge r > 0$.

Proof

Let $(a_{mnp}) \in 3_{l_{\infty}}$ be any element .Then, we have

,,|| < ∞}. …………………. (2.1)

If $(x_{mnp}) \in 3_{l_r}$ is an arbitrary element, then

∑ ∑ ∑ || < ∞. …………………… (2.2)

Now consider

$$
\sum_{m}\sum_{n}\sum_{p}|a_{mnp}x_{mnp}|^{r} \leq sup_{m,n,p}|a_{mnp}|^{r}\sum_{m}\sum_{n}\sum_{p}|x_{mnp}|^{r} < \infty.
$$

this impies $(a_{mnp}) \in (3_{l_r})^{\eta}$. Hence

3[∞] ⊆ (3) .…………………….. (2.3)

For the converse part of the theorem, if $(a_{mnp}) \notin 3_{l_{\infty}}$ then ∃ a subsequence say (a_{iipi}) of (a_{mnp}) such that

≥ ………………………(2.4)

For some $s>0$ where $sr>1$.

Now we define a sequence (x_{mnp}) as

$$
x_{mnp} = \begin{cases} \frac{1}{i^s} \ m = i = n, p = p_i \in N \\ 0 \quad \text{otherwise} \end{cases}
$$

Then
$$
\sum_{m} \sum_{n} \sum_{p} \left| x_{mnp} \right|^{r} = \sum_{i} (\frac{1}{i^{s}})^{r} < \infty
$$

by using equation (2.4).

But
$$
\sum_{m} \sum_{n} \sum_{p} |a_{mnp} x_{mnp}|^r = \sum_{m} \sum_{n} \sum_{p} |a_{mnp}|^r |x_{mnp}|^r
$$

\n $\ge \sum_{i} |i^s \times \frac{1}{i^s}| \to \infty$
\n $\Rightarrow (a_{mnp}) \notin (3_{i_r})^{\eta}$
\n $\Rightarrow (3_{i_r})^{\eta} \subseteq 3_{1_{\infty}}$(2.5)

From (2.3) and (2.5)

 $(3_{l_r})^{\eta} = 3_{l_{\infty}}$

 $(3_{l_{\infty}})^{\eta} = 3_{l_{\mathbf{r}}}$

Similarly, we can prove that

Again

$$
(3l\infty)ηη = ((3l\infty)η)η
$$

$$
= (3lr)η
$$

$$
= 3l\infty
$$

This implies that $3_{l_{\infty}}$ is perfect. Similarly, we can prove that $3_{l_{\rm r}}$ is also perfect.

2.1.2. Theorem2.2

 $(3_{c_0})^{\eta} = (3_c)^{\eta} = 3_{l_r}$ and both the spaces 3_{c_0} , 3_c are not perfect for $1 \ge r > 0$.

Proof

By the definition of 3_{c_0} and $3_{l_{\infty}}$, we have 3_{c_0} \subseteq $3_{l_{\infty}}$. Taking η –dual of

Both sides and using Lemma 2.1, we get

$$
(3_{l_{\infty}})^{\eta} \subseteq (3_{c_0})^{\eta}
$$

$$
\Rightarrow 3_{l_{\rm r}} \subseteq (3_{c_0})^{\eta}.
$$

Again, let $(a_{mnp})\in (3_{c_0})^{\eta}$ be an arbitrary element. Then

$$
\sum_{m} \sum_{n} \sum_{p} \left| a_{mnp} x_{mnp} \right|^{r} < \infty, \text{for } (x_{mnp}) \in 3_{c_0}
$$
\n
$$
\Rightarrow \sum_{m} \sum_{n} \sum_{p} \left| a_{mnp} \right|^{r} \left| x_{mnp} \right|^{r} < \infty
$$
\n
$$
\Rightarrow \sum_{m} \sum_{n} \sum_{p} \left| (a_{mnp})^{r} \right| \left| z_{mnp} \right| < \infty, \text{Where } (z_{mnp}) = (x_{mnp})^{r}
$$
\n
$$
\Rightarrow (a_{mnp})^{r} \in (3_{c_0})^{\alpha} = 3_{l_1}
$$
\n
$$
\Rightarrow (a_{mnp}) \in 3_{l_r}, \text{for all } (a_{mnp}) \in (3_{c_0})^{\eta}
$$
\n
$$
\text{So, } (3_{c_0})^{\eta} \subseteq 3_{l_r}
$$

$$
f_{\rm{max}}
$$

Further

Hence

 $3_{c_0} \subseteq 3_c$ $(3_c)^{\eta} \subseteq (3_{c_0})^{\eta}$ by Lemma 2.1 $(3_c)^{\eta} \subseteq 3_{l_r}$

 $(3_{c_0})^{\eta} = 3_{l_r} \dots (2.6)$

Also,

3 ⊆ 3^l[∞] ⇒ (3[∞]) ⊆(3) By Lemma 2.1 ⇒ 3^l^r ⊆(3) So, (3) =3^l∞…………………. (2.7)

For perfectness, let us consider

$$
(3c0)ηη = (3lr)η
$$

$$
= 3l∞
$$

i.e.
$$
(3c0)ηη \neq 3c0
$$

This implies that 3_{c_0} is not perfect. Similarly, we can prove that 3_c is also not perfect.

2.2. Definition2.3

The space 3_{σ} of all eventually alternating triple sequence space is defined as

$$
3_{\sigma} = \{(a_{mnp}) \in 3_{\omega}: a_{mnp} = a_{m,n,p+1} = a_{m,n+1,p} = a_{m,n+1,p} \text{ for any } m, n, p \ge m_0, n_0, p_0\}.
$$

2.2.1. Theorem 2.4

 $(3_{\sigma})^{\eta} = 3_{l_r}$ and the space 3_{σ} is not perfect.

Proof

By the definition of 3_{σ} , we have

$$
3_{\sigma} \subseteq 3_{l_{\infty}}
$$

$$
\Rightarrow (3_{l_{\infty}})^{\eta} \subseteq (3_{\sigma})^{\eta}, \text{ by Lemma}
$$

$$
\Rightarrow 3_{l_{r}} \subseteq (3_{\sigma})^{\eta}
$$

Let $(x_{mnp}) \in (\mathbf{3}_{\sigma})^{\eta}$ be any element then

$$
\sum_{m} \sum_{n} \sum_{p} \left| a_{mnp} x_{mnp} \right|^r < \infty, for all \left(a_{mnp} \right) \in 3_\sigma. \dots \dots \dots \dots \dots \tag{2.8}
$$

Let us define a sequence((a_{mnp}) , as $a_{mnp} = -a_{m+1,n,p} = -a_{m,n+1,p} = 1$. Then $(a_{mnp}) \in 3_{\sigma}$

Using this in eqs. (2.8), we get

$$
\sum_{m} \sum_{n} \sum_{p} |x_{mnp}|^r < \infty
$$
\n
$$
\Rightarrow (x_{mnp}) \in 3_{1_r}
$$
\ni.e. $(3_{\sigma})^{\eta} \subseteq 3_{1_r}$

So,

Again,

$$
(3_{\sigma})^{\eta\eta} = (3_{l_r})^{\eta}
$$

$$
=3_{l_{\infty}}.
$$

 $(3_{\sigma})^{\eta} = 3_{l_{r}}.$

Hence, 3_{σ} is not perfect.

Corollary 2.1. $(3_{c_0} \cap 3_c)^{\eta} = 3_{l_r} (3_{c_0} \cup 3_c)^{\eta} = 3_{l_r}$ and both spaces are not perfect.

Corollary 2.2. $(3_c \cup 3_{l_{\infty}})^{\eta} = 3_{l_{\Gamma'}} (3_c \cap 3_{l_{\infty}})^{\eta} = 3_{l_{\Gamma}}$.

3. Conclusion

The sequence spaces 3_{l_r} , 3_{l_∞} are perfect and also they are η -duals of each other. On the other hand, the sequence spaces 3_c , 3_{c_0} and $\mathbf{3}_\sigma$ are not perfect.

Compliance with ethical standards

Acknowledgments

The first author is partially supported by a research grant in the form of CSIR SRF (File number 08/754(0001)/2020- EMR-1) by Council of Scientific and Industrial Research –Human Resource Development Group (CSIR-HRDG).

Disclosure of conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article .

References

- [1] Ahmed ,Z.U., Mursaleen ,M., Kothe-Toeplitz duals of some new sequence spaces and their matrix maps, Pub.Inst.Maths Beograd ,42(56)(1987),57-61.
- [2] Ansari, A.A., Chaudhari, V.K., On kotheToeplitz duals of some new and generalized difference sequence spaces, Italian J.Pure and Appl .Maths (2012), 135-148.
- [3] Ansari, A.A., Srivastava, S.K.,Yadav ,N.K., η dual of generalized difference sequence spaces, Internat. J. of Research in Advent Technology (7) (6) (2019), 70-72.
- [4] Choudhary,B., Mishra, S.K., A note on Kothe –Toeplitz duals of certain sequence spaces and their matrix transformation ,Internat .J. Maths and Math .Sci. (18)(4) ,(1995),681-688.
- [5] Choudhary, B., Nanda,S. ,Functional Analysis with Applications, Wiley Eastern Limited,1989.
- [6] Et,M. ,Esi,A. ,On kothe-Toeplitz duals of generalized difference sequence spaces Bull. Malaysian Math. Sci. Soc. 23(2) (2002), 25-32.
- [7] Kizmaz, H., On certain sequence spaces, Canadian Math .Bull.24 (2)1981, 169-176.
- [8] Kothe, G., Toeplitz, O., Lineare Raume mit unendlichuielen koordination and Ringe unenlicher matrazen, J.F. Reine U .Angew Math.171 (1934), 193-226.
- [9] Maddox, I.J., Elements of Functional Analysis, Combridge univ.press, 1970.
- [10] Tripathy,B.C., Chandra ,P. ,On Generalized kothe-Toeplitz duals of some sequence spaces, Ind. J. Pure and Appl.Math., 33(8)(2002),1301-1306.
- [11] Wilansky,A., Summability through Functional Analysis, NorthHolland,1984.