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Abstract 

Blockchain applications face major scalability challenges, hindering their ability to support services with large-scale and 
frequent transactions, such as the computational and communication overhead involved in integrity verification for 
large-scale IoT data. To tackle the problem, we propose a Blockchain and Bilinear mapping-based Data Integrity Scheme 
(BB-DIS) tailored for large-scale IoT data in cloud storage. The paper introduces a blockchain-based framework for data 
integrity verification of large-scale IoT data which includes a series of protocols, verification algorithms, and detailed 
performance analysis; develops a prototype system incorporating an edge computing processor near the IoT devices to 
preprocess the large-scale IoT data to significantly reduce communication costs and computational burdens; and 
performs multiple simulation experiments on Hyperledger Fabric to provide a comparative analysis of computational 
and communication overhead between BB-DIS and other baseline schemes. Experimental results demonstrate that the 
proposed BB-BIS surpasses existing blockchain-based methods in computational cost and communication overhead for 
large-scale IoT data.  
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1. Introduction

With the widespread adoption of Internet of Things (IoT) technologies like smart cities, autonomous vehicles, and smart 
grids, the number of devices connected to the Internet is skyrocketing. Gartner predicts a 42% increase in IoT 
connections and $20 billion in spending from 2018 to 2020. As such, securely collecting [1], processing, storing, and 
analyzing these massive IoT datasets has become a critical issue for the continued development of IoT applications [2]. 
Traditional distributed database systems cannot meet the data management needs in the IoT landscape, leading to the 
rise of Cloud Storage Services (CSSs). 

By storing data externally, the combination of IoT and cloud technology removes the burden of local storage and 
management. However, cloud service providers can potentially gain control over users’ data, posing significant security 
risks. Therefore, verifying the integrity of IoT data is crucial for effective cloud storage. Current data integrity 
verification methods for cloud storage typically rely on hash functions [3], asymmetric cryptographic algorithms [4], 
and erasure codes [5]. These methods can be categorized into provable data possession (PDP) mechanisms [4] and 
proofs of retrievability (POR) mechanisms [6] based on their ability to correct erroneous data post-verification. 
Traditional methods often depend on trusted Third Party Auditors (TPAs) for auditing, which reduces user burdens 
during verification. For instance, in Wise Information Technology of 120 (WIT120), large volumes of electronic health 
records (EHR) collected by wearable devices are stored in the cloud, and service providers generally delegate validation 
tasks to TPAs to ensure data integrity. However, TPAs are not entirely trustworthy in real-world scenarios. Even 
encryption methods [7], which can prevent user privacy breaches, rely on the TPA's credibility for quality and 
effectiveness. 
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Blockchain technology has recently gained significant attention for its transparency, immutability, security, and 
decentralization. Researchers are exploring the execution of integrity verification services within decentralized 
blockchain networks, where transactions can occur without a trusted TPA. Ethereum and Hyperledger Fabric are two 
popular frameworks for implementing blockchain networks [8]. However, blockchain applications face major scalability 
challenges, hindering their ability to support services with large-scale and frequent transactions, such as the 
computational and communication overhead involved in integrity verification for large-scale IoT data [9][10][11]. 
Additionally, the dynamic nature of IoT data [12][13] has rarely been addressed by most existing blockchain-based data 
integrity methods.  

To tackle the aforementioned issues, we propose a Blockchain and Bilinear mapping-based Data Integrity Scheme (BB-
DIS) tailored for large-scale IoT data in cloud storage. The main contributions of this paper are summarized as follows:  

We introduce a blockchain-based framework for data integrity verification of large-scale IoT data. This includes a series 
of protocols, verification algorithms, and detailed performance analysis. 

We develop a prototype system incorporating an edge computing processor near the IoT devices to preprocess the 
large-scale IoT data, significantly reducing communication costs and computational burdens.  

We perform multiple simulation experiments on Hyperledger Fabric, providing a comparative analysis of computational 
and communication overhead between BB-DIS and other baseline schemes. Various sampling strategies are explored, 
leading to the recommendation of an optimized sampling verification scheme. 

2. Literature Review 

2.1. Data Provenance 

Data provenance is crucial for cloud computing system administrators to diagnose system or network intrusions. Cloud 
environments often involve data transfers between various system and network components, either within a data 
center or across multiple federated data centers. Due to multiple data copies and diverse transfer paths designed for 
resilience, tracking the exact path and origin of attacks becomes complex. This complexity makes it difficult for 
administrators to pinpoint the source of an attack, identify the software or hardware components involved, and assess 
the impact. Identifying security breaches with high precision is necessary, and data provenance can help achieve this. 

Modern provenance systems in the cloud use logging and auditing technologies to support these tasks. However, these 
technologies are often ineffective in the complex nature of cloud computing systems, which involve multiple layers of 
interacting software and hardware spread across different geographic and organizational boundaries. Tracing the 
origin, cause, and impact of security violations in cloud infrastructures requires collecting forensics and logs from 
diverse sources, which is a challenging task. Logs only provide a sequential history of actions related to each application, 
whereas provenance data offers detailed histories of changes to data objects, including the components that processed 
the data and the users who interacted with it, thus providing stronger assurance requirements. 

Several data provenance efforts have been presented by researchers. PASS was the first scheme to address the collection 
and maintenance of provenance data at the operating system level [8]. A file provenance system [9] intercepts file 
system calls below the virtual file system, requiring changes to the operating system. For cloud data provenance, 
S2Logger [10] was developed as an end-to-end data tracking tool providing both file-level and block-level provenance 
in kernel space. In addition to data provenance techniques and tools, the security of provenance data and user privacy 
have also been explored. Asghar et al. [11] proposed a secure data provenance solution for the cloud using a twofold 
encryption method to enhance privacy, though it comes with higher computational costs. SPROVE [12] ensures the 
confidentiality and integrity of provenance data using encryption and digital signatures but lacks data querying 
capabilities. Progger [13] is a kernel-level logging tool providing tamper-evidence at the cost of user privacy. 
Provenance data is also used for managing cloud environments, such as discovering usage patterns for cloud resources, 
promoting resource reuse, and managing faults [14]. 

2.2. Blockchain 

Blockchain technology has garnered significant interest from a variety of sectors including finance, healthcare, utilities, 
real estate, and government agencies. Blockchains are shared, distributed, and fault-tolerant databases that all 
participants in the network can access, but no single entity can control. This technology is designed to function in highly 
contested environments against adversaries aiming to compromise the network. Blockchains anticipate the presence of 
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adversaries and counter their strategies by leveraging the computational power of honest nodes, ensuring that the 
exchanged information is resistant to manipulation and destruction. The reconciliation process between entities is 
accelerated due to the absence of a trusted central authority or intermediary. Tampering with blockchains is extremely 
challenging because of the use of a cryptographic data structure and the lack of reliance on secrets. Blockchain networks 
are fault-tolerant, allowing nodes to remove compromised nodes. Despite this robustness, several vulnerabilities exist 
[15], which could potentially affect the integrity of the blockchain. However, exploiting these vulnerabilities would 
require a malicious node to have immense computational power, making such attacks cost-prohibitive. 

The decentralization and security features of blockchain have led researchers to develop various applications such as 
smart contracts, distributed DNS, and identity management. In addition to Bitcoin, Ethereum [16] is built on a public 
blockchain designed for the simple and rapid development of decentralized applications using a per-address transaction 
model. Multichain [17] offers an open-source permissioned blockchain network, allowing developers to host their 
blockchain on a private cloud architecture. Multichain uses a per-output transaction model and can handle high 
throughput [18]. Tierion [19] provides a platform for uploading and publishing data records into the blockchain 
network. With available public APIs, Tierion is convenient for integrating applications that require blockchain 
technology. Developers can post metadata using HTTP requests to the Tierion data store and fetch record information. 

Each data record has a record ID used to retrieve the blockchain receipt generated from the blockchain transactions. 
The blockchain receipt includes the transaction ID, which is used to locate a transaction and the block that contains it. 
This ensures that the posted data record on the blockchain cannot be tampered with, thus assuring its integrity. 

Blockstack Labs from Princeton University proposed a decentralized PKI service on top of Namecoin and a blockchain-
based naming and storage system [20]. Blockchain applications in information-centric networks for name-based 
security of content distribution have also been proposed [21]. Enigma is a decentralized computation platform with 
guaranteed privacy, using the blockchain network to manage access control and identity, create tamper-proof event 
logs, and control the network [22]. Guardtime offers industrial-scale blockchain services using Keyless Signature 
Infrastructure (KSI) and secure one-way hash functions, which are quantum-immune compared to RSA [23]. Guardtime 
has also proposed a blockchain standard for digital identity and a protocol for authentication and digital signatures, 
providing a simplified mechanism for revocation management and long-term validity [24]. 

 

Figure 1 ProvChain System Interaction 

2.3. Empirical Studies 

2.3.1. Traditional Work on Data Integrity 

The concept of data integrity verification was first introduced by Deswarte et al. [3] in 2004. They proposed two 
solutions involving the calculation and comparison of message authentication code (MAC) values to determine the 
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completeness of data on remote nodes. However, these solutions incurred significant communication overhead and 
computational costs. To address this, Sebé et al. [14] employed a method of blocking original data files to reduce 
computational expenses. Subsequently, Ateniese et al. [4] introduced the PDP scheme, which utilized Rivest-Shamir-
Adleman (RSA) signatures. This model generated probabilistic proofs of possession by sampling random sets of blocks 
from the server, significantly lowering I/O costs. The client maintained a constant amount of metadata to verify the 
proof. However, the protocol was designed for static files and could not manage dynamic data storage without security 
risks. This issue was addressed in [15], although fully dynamic data operations were not supported. 

Wang et al. [16] proposed a new challenge-response protocol using the Merkle hash tree to ensure the correctness of 
data blocks, introducing an independent TPA to perform the verification operation, thus alleviating the user's burden. 
Juels and Kaliski [6] first introduced a sentinel-based POR model, which randomly added "sentinel" data blocks to the 
stored data and used erasure codes to detect and downgrade distorted data to storage with undefined quality of service. 
Building on Ateniese et al.'s research, Shacham and Waters [17] utilized the Boneh-Lynn-Shacham (BLS) signature 
mechanism to create homomorphic verifiable tags (HVTs), reducing communication overhead while supporting public 
auditing, though it did not ensure user data privacy. Wang et al. [5] leveraged the linear characteristics of erasure codes 
to enable partial dynamic operations. Chen and Curtmola [18] employed Cauchy Reed-Solomon linear coding to 
preprocess data, improving the recovery speed of erroneous data, but the computational costs remained high. To 
prevent TPA from leaking private data [19], Wang et al. [7] proposed a data integrity verification mechanism using 
public key-based homomorphic authenticator and random mask, achieving privacy protection in public cloud systems. 
Othman et al. [21] aimed to reduce energy consumption in wireless sensor networks (WSNs) [20] by adopting 
symmetric-key homomorphic encryption to protect data privacy, combined with homomorphic signatures to verify 
aggregated data integrity. Zhu et al. [22] decreased the computational overhead of hash functions in the signature 
process [23] and utilized random masking techniques to preserve data privacy.  

Considering the specificity and complexity of graph databases, Arshad et al. [24] proposed two security concepts based 
on hash message authentication code (HMAC) for verifying the integrity of graph data and query results. Reina et al. 
[25] took into account the direction of edges, calculating a new hash value, such as a chained hash, from the 
concatenation of the current node. 

2.3.2. Applications of Blockchain 

With its fundamental attributes of decentralization, persistence, and auditability [26], blockchain technology has 
emerged as a transformative and enabling technology, gradually being adopted across various industry verticals. 
Blockchain can play a crucial role in addressing numerous IoT security issues [2]. Suliman et al. [27] demonstrated a 
blockchain solution using Ethereum smart contracts for monetizing IoT data with automated payments, eliminating the 
need for intermediaries. Albreiki et al. [28] developed a blockchain-based system utilizing Ethereum smart contracts to 
manage access control policies for IoT data access in a decentralized manner without relying on a trusted third party. 
Despite these advancements, the integrity issues of IoT data still require solutions. Chaer et al. [29] examined the system 
integration architecture and sequence flow diagrams to show how blockchain can support and enhance 5G networks. 
Salah et al. [30] explored how integrating artificial intelligence (AI) with blockchain can foster the development of a new 
decentralized economy and identified open research challenges in utilizing blockchain for future AI applications. To 
combat fake digital content, Hasan and Salah [31] proposed a solution using Ethereum smart contracts to trace and 
track the provenance and history of video content back to its original source, even if the content has been copied 
multiple times.  

2.3.3. Blockchain-Based Work on Data Integrity 

Building on previous research in cloud storage architecture and data integrity, Liu et al. [9] introduced a blockchain-
based method for ensuring the integrity of IoT data. This approach allows for integrity verification without relying on 
TPAs in a dynamic IoT environment. However, improvements are needed in the speed of uploading IoT data and the 
size of the verified data. Yue et al. [10] developed a blockchain-based P2P cloud storage data integrity verification 
framework, utilizing Merkle trees for verification and analyzing system performance with different Merkle tree 
structures. Liang et al. [32] proposed a decentralized and trusted cloud data provenance system to ensure data security, 
with the provenance auditor verifying data through blockchain information. Wang et al. [11] introduced a decentralized 
model to address the single point of trust issue in traditional data auditing by leveraging collective trust. This protocol 
enables users to trace the history of their data. 

In summary, most existing blockchain-based data integrity verification methods primarily address trust issues rather 
than data size. A significant consideration is that IoT data stored in the cloud must be updated in real-time to meet the 
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latest requirements of various applications. Thus, it is essential to develop a blockchain-based dynamic solution focused 
on data renewal for data integrity verification.  

3. Our Scheme BB-DIS 

3.1. Preliminary 

3.1.1. Blockchain Technology 

Blockchain technology enables decentralized peer-to-peer transactions, coordination, and collaboration without the 
need for trust, utilizing data encryption, time stamping, and distributed consensus. It effectively addresses the issues of 
high cost, inefficiency, and insecure data storage inherent in centralized systems. The first generation of blockchain, 
introduced by Bitcoin, serves as a public ledger for digital currency transactions. While much research on blockchain 
focuses on Bitcoin, the technology has applications far beyond it [33]. The second generation of blockchain offers a 
flexible programmable platform, introducing smart contracts as autonomous programs that operate within blockchain 
networks. A smart contract is a digital protocol designed to establish agreements between parties based on predefined 
rules without needing a trusted third party [34]. These contracts can represent triggers, constraints, and even complete 
business processes. Ethereum, known for its smart contracts, is a prominent second-generation blockchain. 
Transactions in Ethereum are signed messages initiated by an external account, transmitted via the Ethereum network, 
and recorded on the Ethereum blockchain [35]. Ethereum transactions fall into three categories: transferring 
transactions, creating smart contracts, and executing smart contracts. Hyperledger Fabric, a permissioned blockchain, 
offers various consensus mechanisms. Versions 0.6 and 1.0 of Hyperledger Fabric provide PBFT and Kafka consensus 
mechanisms, respectively, and it is widely used in developing decentralized applications. 

3.1.2. Bilinear Mapping 

We assume 𝐺" is a Gap Diffie-Hellman (GDH) group, 𝑃 is the generator of group 𝐺", and 𝐺$ is another multiplicative 
cyclic group of prime order q. The mapping 𝑒: 𝐺" × 𝐺" → 𝐺$ is known as bilinear pairing and possesses the following 
properties: 

Computability: For any 𝑎, 𝑏 ∈ 𝐺", there exists an efficient algorithm to compute (𝑎, 𝑏). 

Bilinear: For any 𝑎, 𝑏, 𝑐 ∈ 𝐺", the following holds: 

𝑒(𝑎, 𝑏𝑐) = 𝑒(𝑎, 𝑏)𝑒(𝑎, 𝑐) 

𝑒(𝑎, 𝑏) = 𝑒(𝑏, 𝑎) 

Non-degenerate: 𝑃 is non-degenerate if (𝑃, 𝑃) ≠ 1.  

3.1.3. Short Signature 

RSA, Digital Signature Algorithm (DSA), and BLS signatures comprise 1024 bits, 320 bits, and 160 bits, respectively, 
under equivalent security conditions. The computational security of the RSA algorithm depends on the challenge of 
factoring large integers, resulting in excessive computational overhead. While the DSA signature is a variant of the RSA 
signature, it cannot encrypt data files. On the other hand, the BLS signature can function in any bilinear cryptographic 
context and remains unforgeable in the random oracle model. However, the BLS-based scheme necessitates the 
adoption of a specific hash function, which exhibits efficiency concerns with large-scale data. In this context, this paper 
introduces a secure hash function 𝐻: {0,1}* → 𝑍3* , which can be a general cryptographic hash function such as SHA-1 
or MD5. 

The ZSS short signature, proposed by Zhang et al. [23], is based on bilinear pairing and incurs less overhead than the 
BLS signature. We assume, employing the properties of bilinear mapping, where (𝑃5, 𝑃6) = (𝑃, 𝑃)(56). This signature 
system primarily comprises three functions: 

 KeyGen: The data owner selects a random integer 𝛼 ← 𝑍3* as the private key 𝑠𝑘 and 𝛼𝑃 as the public key 𝑝𝑘. 
The private key 𝛼 cannot be derived from 𝑝𝑘. 

 Sign: The signature of the message 𝑚 is 𝑆𝑖𝑔 = G (H")IJ 𝑃. 
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 Verify: A verifier possesses (pk), 𝑚, 𝑆𝑖𝑔′ and needs to verify 𝑆𝑖𝑔′ = G (H")IJ 𝑃. This entails calculating (𝑃, 𝑃) and 
((𝑚)𝑃 + 𝛼𝑃, 𝑆𝑖𝑔′) and determining their equality. If they are equal, the signature is verified to be generated by 
the holder of the private key 𝛼. Verification is achieved through the following equations: 

𝑒(𝐻(𝑚)𝑃+𝛼𝑃,𝑆𝑖𝑔)=𝑒N(𝐻(𝑚)+𝛼)𝑃,𝑃O𝐻(𝑚)+𝛼=𝑒(𝑃,𝑃)(G(H)IJ)∙G(H")IJ=𝑒(𝑃,𝑃)………(1) 

3.2. Framework of Our Scheme  

Table I gives a list of main symbols that will be covered in our scheme.  

Table I Symbols in the Framework  

Symbol  Definition  

DOD  Data Owner Device 

DCD  Data Consumer Device  

CSP  Cloud Service Provider  

HSSC  HVTs Storage Smart Contract 

CRSC Challenge Receiving Smart Contract 

IVSC Integrity Verification Smart Contract 

 

 

Figure 2 Framework of BB-DIS 

The BB-DIS framework is illustrated in Figure 2, comprising four primary entities: Smart Contracts, Data Owner Devices 
(DODs), Data Consumer Devices (DCDs), and Cloud Service Providers (CSPs). To fulfill various functions, three types of 
smart contracts exist: HVTs Storage Smart Contract (HSSC), Challenge Receiving Smart Contract (CRSC), and Integrity 
Verification Smart Contract (IVSC). All entities can function as blockchain nodes within the blockchain network. In 
practice, data integrity verification involves multiple data owners and consumers, executed by smart contracts within 
the blockchain system. Users with integrity requirements can deploy blockchain clients on their node devices or exit 
the blockchain network. Additionally, CSPs act as nodes in the blockchain network, dispersing nodes entirely and 
enhancing integrity verification efficiency. 

DODs and DCDs must be incorporated into the blockchain network during system initialization to create a key pair. The 
data owner is responsible for covering the costs of interacting with smart contracts and cloud storage services. CSPs 
can operate as miner nodes in the blockchain network, enabling them to offer services through mining and earn 
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corresponding rewards. Data consumers request access to data stored on cloud servers and pay the associated 
expenses. Unlike Hyperledger Fabric, each node account in the Ethereum network must have sufficient gas to ensure 
successful transactions. During each transaction, DODs pay promissory gas for data storage services to the respective 
CSP.  

Each cloud service provider offers cloud storage solutions, such as Amazon S3, IBM Bluemix, Microsoft Azure, and Smart 
Ocean. Within this framework, CSPs furnish a standard data storage service for data owners, while non-cloud data can 
be transferred via an inter-node P2P network. 

Once deployed, modifying smart contracts becomes challenging; therefore, if any security vulnerabilities exist in smart 
contracts, preventing attacks by hackers becomes arduous. Hence, it is imperative to thoroughly test smart contract 
code and employ essential security analysis tools to eradicate any security loopholes [36]. The Chaincode Scanner 
serves as a security analyzer for Hyperledger Fabric smart contracts, aiding in the detection of security vulnerabilities 
within the smart contracts. 

For the blockchain network's security and efficiency, two primary concerns in this domain, we make the following two 
assumptions. Firstly, the likelihood of 51% attacks and selfish mining is minimal if all participating nodes prioritize their 
own benefit. Bitcoin's blockchain serves as the most evident proof; instead of initiating a 51% attack, a malicious 
attacker would prefer using computational power for mining. In reality, such attacks are rare. Secondly, achieving 
blockchain consensus within a short timeframe is feasible. In the Ethereum blockchain, transactions can be validated 
within an average duration of 12 seconds, while Hyperledger Fabric aims for consensus in less than 1 second. Generally, 
Hyperledger Fabric proves more suitable for enterprise-level blockchain applications compared to other blockchain 
platforms.  

3.3. Verification Protocol  

 

Figure 3 Verification protocol  

 The verification process of this plan is depicted in Figure 3, while the transactions among various smart contracts and 
all participants are meticulously detailed in Table II. The protocol unfolds in three phases: the step stage, challenge 
stage, and verification stage, with smart contracts and CSP assuming the roles of verifier and proof provider, 
respectively. 
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Table II Protocol: Data Integrity Verification using Blockchain  

  Step  Entities  Operation  

 Step stage   

1 DOD  Generate 𝑠𝑘, 𝑝𝑘 (for short signature)  

2 DOD  Slice data into shards, generate hvts  

3 DOD → CSP  Upload data shards and hvts  

4 DOD → HSSC  Upload hvts  

 Challenge Stage   

1 DOD  Create a set of indexes 𝐼 = {𝑠R}, 𝑣R  

2 DOD → CSP  𝑐ℎ𝑎𝑙 = {(𝑖, 𝑣R)}  

3 DOD → CRSC  𝑐ℎ𝑎𝑙 = {(𝑖, 𝑣R)}  

 Verification Stage   

1 HSSC → IVSC  Send hvts  

2 CRSC → IVSC  Send 𝑐ℎ𝑎𝑙  

3 CSP  Compute proof {𝑅, 𝜇, 𝜂}  

4 CSP → IVSC  Send proof {𝑅, 𝜇, 𝜂}  

5 IVSC  Verify  

6 IVSC → DOD  Return the verification result  

In the step stage, the DOD initiates a bilinear mapping, selects a short signature hash function, randomly chooses a 
private key, and computes a corresponding public key from the private key. Subsequently, the DOD divides a data file 
into a set of equally sized data shards, computes the HVT of each data shard post-hashing, generating an authentication 
metadata set to reduce communication overhead while supporting public auditing. The DOD uploads the data shard set 
and metadata set to the cloud storage server and transmits the metadata set to the HSSC via the blockchain network in 
a transaction format before locally deleting the data file. 

During the challenge stage, the DOD selects c elements from HSSC to construct a data shard index set randomly and 
forwards a series of random values, alongside the data shard index set, to the CSP and CRSC in the form of a challenge 
request. 

In the verification stage, IVSC obtains HVTs and the challenge request from HSSC and CRSC, respectively. Upon receiving 
the challenge request, CSP computes the proof {𝑅, 𝜇, 𝜂} and dispatches it to the IVSC, which verifies the proof's accuracy. 
If deemed correct, indicating data integrity in the cloud, the IVSC conveys the outcome to the DOD. 

Additionally, a DCD can also instigate a verification request for stored data. In such scenarios, a DOD remains imperative 
for preliminary tasks in the step stage. A DCD seeking integrity verification service can participate in the challenge and 
verification stages. Upon confirming data integrity, the CSP directly dispatches the data from servers to the 
corresponding client via the P2P network.  

3.4. SC-Verification Algorithm  

In the verification process, we utilize smart contracts and devise the verification algorithm in accordance with the 
verification protocol to authenticate metadata. The application of the SC-Verification algorithm unfolds through the step 
stage, challenge stage, and verification stage as outlined below: 

3.4.1. Step stage: 

𝐺" represents a q-order cyclic additive group, where P denotes one of its generators, and 𝐺$ signifies a q-order cyclic 
multiplicative group. 𝑍3 denotes the integer ring of mod q. 
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To begin, the DOD must establish a bilinear mapping: 𝑒: 𝐺" × 𝐺" → 𝐺$ and a security hash function for short signatures: 
𝐻: {0,1}∗ → {0,1}Y Considering 𝜙 as a pseudorandom function where and |𝑞| ≥ 𝜆 ≥ 160. 

Next, the DOD randomly selects a private key 𝛼, yielding the corresponding public key as 𝑌 = 𝛼𝑃. The public key is 
denoted as Y, and the private key as 𝛼, ensuring the impossibility of computing the private key from the public key. 

Subsequently, the DOD partitions the data file F into equal-length data shards: {𝑚", 𝑚$, 𝑚f, … , 𝑚g}, and computes an 
HVT for each data shard 𝑚R:  

𝛿R = (𝑚R) + 𝛼 𝑃 ………….(2) 

This results in a metadata collection: 𝛷 = {𝛿", 𝛿$,… , 𝛿g} 

Finally, the DOD uploads the data shard set to the cloud storage server and transmits the metadata set 𝛷 to HSSC. 
Following this, the DOD locally deletes the data file. The procedure is depicted in Algorithm 1: 

Algorithm 1: Step  

 

3.4.2. Challenge stage 

The DOD selects c elements at random to create a data shard index set 𝐼 = {𝑠", 𝑠$, … , 𝑠n}, and generates a pseudo-random 
number for each 𝑖 ∈ 𝐼. The DOD then sends these random values along with the data shard index set to the CSP and CRSC 
as part of the challenge request 𝑐ℎ𝑎𝑙 = {(𝑖, 𝑣R)}, where 𝑠" < 𝑖 < 𝑠n. 

3.4.3. Verification stage 

Upon receiving the challenge request, the CSP, acting as the proof provider, computes the following: 

𝑅=∑i∈IviY…………..(3) 

μ=∑i∈IviH(mi)P  …………….(4) 

η=P−∑i∈Iδi……………..(5) 

The CSP sends {𝑅, 𝜇, 𝜂} as the proof to the IVSC. Upon receiving this proof, the IVSC checks the integrity of the data stored 
in the cloud by verifying: 

(𝜂,𝑃)∙(𝜇+𝑅,𝑃)=𝑒(𝑃,𝑃)………….(6) 

If the equation holds true, the data is considered intact. The smart contract then returns the verification result to the 
requester. This procedure is outlined in Algorithm 2:  
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Algorithm 2: Challenge and Verification 

  

3.5. Performance Analysis of SC-Verification Algorithm 

3.5.1. Feasibility 

Based on the proposed scheme, if the CSP maintains the integrity of the stored data, the proof provided by CSP will be 
accurate. The correctness of our scheme is demonstrated by the following calculation: 

𝑒(𝜂,𝑃)⋅𝑒(𝜇+𝑅,𝑃)=𝑒((𝑃−∑i∈Iviδi),𝑃)⋅𝑒((∑i∈IviH(mi)P+∑i∈IviY),𝑃)𝑒(𝜂, 𝑃) 

=𝑒((𝑃−∑i∈IviH(mi)P+αP),𝑃)⋅𝑒((∑i∈IviH(mi+α)P),𝑃) 

=𝑒(−∑i∈IviH(mi+α)P,𝑃)⋅𝑒(𝑃,𝑃)⋅𝑒((∑i∈IviH(mi+α)P),𝑃) 

=(𝑃,𝑃)………………..(7) 

From the deduction of equation (7), it is clear that our SC-verification algorithm is feasible. 

3.5.2. Security: 

We assume there are attackers or malicious servers attempting to tamper with the data stored by data owners in the 
cloud. To pass the verification of the smart contract, they would need to construct a signature δ∗=∑vi∗P such that: 

μ∗=∑i∈IviH(mi)P+vH(m∗)P…………(8) 

And: 

η∗=P−∑i∈Iviδi−vδ∗…………………(9) 

(𝜂∗,𝑃)⋅(𝜇∗+𝑅,𝑃)=𝑒(𝑃,𝑃) ……………(10) 

However, without knowledge of the private key α, it is impossible to forge m∗ that satisfies: 
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1/H(m∗)+α = 1/H(m)+α …………..(11) 

Thus, the proof cannot be altered. 

If attackers or malicious servers delete the data mmm in the cloud storage, similar to the above analysis, they cannot 
forge a valid m∗ without the private key α. 

From this analysis, we conclude that our SC-verification algorithm effectively counters malicious attacks. 

3.5.3. Dynamicity 

Our scheme supports dynamic data updates through the update request algorithm UpdateReq() and the update 
execution algorithm UpdateExec(). These operations include appending, modifying, and deleting data shards. 

 UpdateReq(): This algorithm is executed on the DOD, generating an update request for the outsourced file copy 
stored at the remote CSP. The output is an update request formatted as 〈𝐵𝑙𝑜𝑐𝑘𝑂𝑝, 𝐼𝑛𝑑, 𝑚𝑖, 𝛿𝑖〉, where 𝐵𝑙𝑜𝑐𝑘𝑂𝑝 
indicates the operation type, and 𝐼𝑛𝑑, 𝑚𝑖, and 𝛿𝑖 denote the index of the updated data shard, the updated data 
shard, and the updated metadata, respectively. The DOD sends this request to the cloud. 

 UpdateExec(): Executed on the CSP server, this algorithm takes the update request from the DOD as input and 
produces a new file copy 𝐹 and new metadata 𝛿𝑖 as output. After each update, to ensure the update's 
correctness, the DOD will run the challenge agreement. 

 Appending Operation: The DOD inserts a new data shard at position j. Initially, if there are n data shards, the 
number of shards will increase to 𝑛 + 1 after appending. Even if the generated challenge request includes the 
new data block 𝑚𝑛+1, verification remains valid since the metadata set is updated. 

 Deletion Operation: When a data shard is deleted, all subsequent shards shift one position forward. If the data 
shard at index j is to be deleted, the DOD sends a delete request 〈𝐷𝑒𝑙𝑒𝑡𝑒, 𝑗, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙〉 to the CSP. Upon receiving 
this request, the CSP removes the data shard at index j from the backups. 

 Modification Operation: Similar to the appending operation, after modifying, there will still be 𝑛 data shards. 

4. Prototype System of BB-DIS  

Figure 4 illustrates a prototype system based on the BB-DIS framework. The system is structured into four layers from 
bottom to top: 1) IoT devices, 2) edge computing devices and clients, 3) cloud storage service, and 4) data consumer 
devices. 

 

Figure 4 Prototype system 

As depicted in Figure 4, each component functions as a node in both the blockchain and P2P network. IoT devices handle 
data generation. Clients and edge devices act as data owners, with edge computing managing the local processing and 
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transmission of source data. The processed IoT data is then stored in cloud servers or smart contracts. Data owner 
clients initiate verification requests and send challenge requests through the blockchain network. Data consumer 
clients, operating on PCs or in the cloud, can send data consumption requests or access stored IoT data. 

4.1. Edge Computing 

Edge computing features a decentralized architecture, utilizing any node with computing and network resources 
between the data generation source and the cloud center as an edge node. This architecture moves application 
operations, data resources, and services from the central node to the network's edge nodes. Consequently, it accelerates 
data processing and transmission, reduces delays, and enhances the efficiency of handling large volumes of data. With 
the IoT's rapid growth and the expansion of cloud computing services, edge computing offers significant benefits in 
areas like cloud offloading, video analytics, smart homes, and smart cities . Its low latency and high data processing 
capabilities greatly improve our daily lives. 

In the proposed blockchain-based data integrity scheme, edge devices play a crucial role. As shown in Figure 4, they not 
only facilitate the transmission of IoT device messages and transactions but also aid in managing data storage and 
performing computations . The functions of edge devices in our prototype system include: 

 Identifying IoT Devices: The edge server maintains an identity record of all nearby IoT devices and assists 
each device in generating data shards and HVTs. 

 Creating Transactions for IoT Devices: A valid blockchain transaction requires the IoT device's signature or 
verification from other nodes. Edge servers help mitigate any deficiencies in IoT devices. 

 Collecting and Transferring Data to the Blockchain Network: The edge server continuously gathers data 
from nearby IoT devices. It identifies cloud server addresses for data storage and sends data blocks to them. 

4.2. Blockchain based P2P File System  

The P2P solution builds upon the client-server model suited for small distributed environments where the server 
possesses significant processing power. The hallmark of P2P networks is symmetric communication between peer 
nodes, where each node can function as both a client and a server. This system addresses the bandwidth challenge of 
sharing files from server to client. Peers can share files among themselves through different segments, eliminating the 
need to request all files from the server simultaneously. This greatly improves the scalability and efficiency of file 
sharing. 

5. Simulation Results and Performance Evaluation  

5.1. Experimental Preparations  

Building on the prototype system, we conducted a series of experiments to evaluate the performance of our scheme. 
The server used was an Inspur Yingxin NF8465M4, while the PC was equipped with an Intel i7 quad-core processor at 
3.30GHz and 16GB of memory, running a 64-bit operating system. We utilized Hyperledger Fabric 1.1.0 as the 
Blockchain platform. The algorithms in this study employed the pairing-based cryptography (PBC) library version 
0.5.14, with a key size of 160 bits and random number size of 80 bits. The Raspberry Pi 3 B+ served as the IoT device, 
collecting data for integrity verification. 

An edge device-based stream data processing structure was established near the data collection layer to process source 
data and generate the metadata set for IoT data collection. A blockchain network was created on Hyperledger Fabric to 
provide a trusted environment for data integrity verification. Hyperledger Fabric's capacity exceeds 4000 TPS, 
compared to Ethereum's 20-30 TPS. Unlike Ethereum and Bitcoin, in Hyperledger Fabric, smart contracts (Chaincodes) 
run on nodes instead of being stored in blocks, allowing for complex business logic implementation. 

5.2. Performance Comparisons 

To validate our data integrity scheme (BB-DIS), we conducted a comparative analysis with methods [9], [10], and [11]. 
Method [9] (B-DIS) uses the blockchain network to store hash results directly. Method [10] (BM-DIS) hashes data shards 
multiple times using a Merkle tree structure. Method [11] (B-DAM) proposes a Blockchain-based data audit mechanism. 
The experiment data was averaged over 30 tests. 
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(a) Computational overhead with different (b) Computational overhead with data size. different 

number of data shards 

Figure 5 Comparison of computational overhead 

Figure 5 illustrates the computational overhead for integrity verification across different IoT data scales. We maintained 
a constant number of shards and samples. In Figure 5(a), when the data size exceeds 150MB, our scheme demonstrates 
greater efficiency, significantly improving verification speed for large-scale data. Figure 5(b) shows that with a fixed 
data shard size (20KB), BB-DIS incurs less computational overhead compared to BM-DIS and B-DAM.  

   

(a) Time cost. (b) Space overhead. 

Figure 6 Comparison of communication overhead  

The communication overhead refers to the time cost or the amount of data generated during data transmission between 
each part in the verification process. The experimental results of three methods are shown in Figure 6. From (a), it is 
evident that our solution’s time cost becomes the lowest when there are more than 700 data shards (50KB). As seen in 
(b), the space overhead increases linearly as the number of sample data shards (1KB) grows. Compared to the other 
two methods, our solution also has the lowest space overhead. Therefore, we can conclude that our solution is more 
advantageous for large sample sizes. 
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Figure 7 Time cost and accuracy of verification for BB-DIS 

Figure 7 illustrates the time cost and accuracy with different numbers of samples for BB-DIS. The total data size is fixed 
at 10MB, and the time cost increases as the number of checked shards rises. From all the simulation results above, we 
can conclude that our scheme achieves higher verification efficiency when the data size exceeds 300MB. Additionally, 
our scheme attains higher accuracy, surpassing 95%, when the number of samples reaches 350. 

To demonstrate the dynamic nature of our scheme, we conducted a series of related simulation experiments. Method 
[10] also exhibits dynamic properties, though the author did not detail them in the article. We used it for comparison 
and conducted simulation experiments on data appending and data modification operations, as shown in Figures 8 and 
9, respectively. 

  

(a) Time cost with different data size. (b) Time cost with different number of inserted shards 

Figure 8 Comparison of time cost for appending 
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(a) Time cost with different data size. (b) Time cost with different number of inserted shards. 

Figure 9 Comparison of time cost for modification 

Figures 8 and 9 illustrate that the modification operation takes significantly less time than the appending operation. The 
time required for data modification depends on the time needed to generate the short signature of the data shards. In 
contrast, the appending operation time is contingent on the data writing speed to the disk. Clearly, as data size increases, 
our solution performs well in dynamic operations. Furthermore, the algorithm does not account for the time cost of 
deletion operations as they do not involve computational overhead. 

Next, we compare BB-DIS with three existing blockchain-based data integrity methods: B-DIS, BM-DIS, and B-DAM in 
Table III. We also highlight the main advantages of our proposed BB-DIS in the following sections.  

Table III Performance Comparison  

 Dyn. Comm. Comp. 

   CSP  IVSC  

B-DIS  No  𝛰(𝑡)  𝛰(1)  𝛰(1)  

BM-DIS Yes 𝛰(𝑐 log n)  𝛰(𝑐 log n) 𝛰(𝑐 log n) 

B-DAM  Yes  𝛰(𝑛)  𝛰(𝑛)  𝛰(𝑛)  

BB-DIS  Yes  𝛰(𝑛 + 𝑐)  𝛰(𝑐)  𝛰(𝑐)  

Note: t denotes the number of data files. n denotes the number of data shards in each file. c denotes the number of shards being challenged 
(samples). Dyn. denotes whether dynamic operations are supported. Comm. denotes communication cost. Comp. denotes computational 

complexity.  

The main advantages of BB-DIS include: 

 Reduced communication overhead: Unlike BM-DIS, BB-DIS does not require CSP to transmit auxiliary 
position information with data shards during verification. 

 Lower verification delay: BM-DIS's verification is slowed by the Merkle tree structure, as calculating the root 
node requires multiple hashings of the data shards. The more layers the Merkle tree has, the greater the 
computational cost. 

 No need for a specific hash function: With BB-DIS, the key size is only 160 bits. Although it requires some 
initial work, it performs exceptionally well with large data sizes. 

5.3. Sampling Algorithms 

Currently, most data integrity methods use a simple random method for sampling and verification. The distribution 
function of the sample directly impacts the sampling outcome. Therefore, we need to establish an optimal sampling 
model for the proposed data integrity scheme. Reference [10] deliberately invalidates a sample and compares the effects 
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of several sampling models at different sample sizes. However, in reality, the corrupted data in the cloud server is likely 
to be more than just one sample. The original sampling model may not be effective when the amount of corrupted data 
increases. 

Figure 10 Comparison of different sampling algorithm 

Figures 10(a), 9(b), and 9(c) show comparisons of different sampling algorithms at corruption rates of 0.01%, 0.02%, 
and 0.05%, respectively. The four methods compared are simple random distribution, Markov process sampling, 
exponential distribution sampling, and binomial distribution sampling. With n=10000 data shards, the ordinate 
indicates the number of rounds needed to detect data corruption. To avoid anomalies, we conducted 30 experiments 
and calculated the average results. 

The experimental results show that as the corruption rate increases, it takes less time to detect the damaged data. In 
our integrity verification model, when c is small, simple random distribution performs better. When c reaches 500, 
Markov process sampling shows clear superiority.  

6. Conclusion 

This paper introduces a data verification integrity scheme leveraging blockchain and bilinear mapping. Initially, we 
integrate smart contracts with bilinear mapping to propose a new data integrity verification framework. We divide the 
data into shards and compute metadata for each shard, allowing smart contracts to perform verification. Based on this 
framework, we develop the corresponding data integrity verification protocol and algorithm. Additionally, we 
incorporate provable update mechanisms to handle the dynamic nature of IoT data. Furthermore, we present a 
prototype system utilizing edge computing to process IoT data. Experimental results demonstrate that the proposed 
BB-BIS surpasses existing blockchain-based methods in computational cost and communication overhead for large-
scale IoT data. Future research will focus on extending our scheme to accommodate more complex data types, such as 
graph data, and addressing data recovery challenges in large-scale IoT environments. 
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