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Abstract 

Manifold learning is a field of study in machine learning and statistics that is closely associated with dimensionality 
reduction algorithmic techniques is gaining popularity these days. There are two types of manifold learning approaches: 
linear and nonlinear. 

Principal component analysis (PCA) and multidimensional scaling (MDS) are two examples of linear techniques that 
have long been staples in the statistician's arsenal for evaluating multivariate data. Nonlinear manifold learning, which 
encompasses diffusion maps, Laplacian Eigenmaps, Hessian Eigenmaps, Isomap, and local linear embedding, has seen a 
surge in research effort recently. A few of these methods are nonlinear extensions of linear approaches. A nearest search, 
the definition of distances or affinities between points (a crucial component of these methods' effectiveness), and an 
Eigen problem for embedding high-dimensional points into a lower dimensional space make up the algorithmic process 
of the majority of these techniques. The strengths and weaknesses of the new method are briefly reviewed in this article. 
In the field of computer graphics, we utilize a particular manifold learning method was first presented in statistics and 
machine learning to create a global, Spectral-based shape descriptor. 

Keywords: Manifold Learning; Isomaps; Embedding; Principal Component Analysis (PCA); Multi-dimensional scaling 

(MDS); Generative Topology Mapping (GTM) 

1. Introduction

Differentiable manifold is an introductory course powerful framework manifold offer for dimension reduction. The key 
idea of dimension reduction finds to most succinct low dimension structure embedded to higher dimension structure. 

A manifold is a higher dimensional extension of curves and surfaces. Manifold is a mathematical concept describing a 
space that locally resembles Euclidian space but may have a more complex global structure essentially. It can be used 
invarious fields. Global descriptors and manifold learning techniques aim to extract an informative and discriminative 
low dimensional vector of features by learning the geometry of a manifold. 
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Figure 1 An example of Manifold 

Example: Let us consider there is little black ant stroll along a manifold in 3D. This type of manifold could be twisty, 
curvaceous even have holes in it. Now here’s rule; fromthe point of view of point of the black ant, all over the place it 
walks should see like a Flat Plane. 

Does anyone recognize this rule? Since we all live in a multiverse, this app is probably the most relatable one you can 
find. One of the most basic examples of a 3D MANIFOLD is a sphere. 

Manifold learning, on this other hand is set of technique used in machine learning to learn and represent the underline 
structure of data that may lie on a non-linear manifold it aims to capture the intrinsic dimensionality and relationships 
within the data is high dimensional potentially noisy manifold learning logrithams often transfer the data into a lower 
dimensional space were its structure more easily analized or visualized clustering classification and dimensionally 
reduction. In 2000 two cutting edge and original articles that appeared in the same scientific journal issue introduced 
the concept of multimodel learning. A class of techniques known as manifold learning or nonlinear dimensionality 
reduction aims to maintain the geometric and topological characteristics of a finite set using samples taken from a high-
dimensional non-euclidean space. 

The issue covered in these articles was how to retrieve data from a nonlinear low-dimensional manifold that is 
embedded in higher-dimensional ambient environment. 

2. History of Manifold 

The concept of a manifold has its roots in mathematics, particularly in geometry and topology. Manifolds were first 
formally introduced in the 19th century, with significant contributions from mathematicians like Bernhard Riemann 
and Henri Poincaré. 

2.1. Early Concepts 

The notion of a manifold began to take shape with the study of surfaces in three dimensional space. Mathematicians 
realized that surfaces such as spheres, cylinders, and tori could be described locally by simple Euclidean coordinates. 
This idea laid the foundation for the more abstract concept of a manifold. 

2.2. Riemannian Manifolds 

Bernhard Riemann made substantial contributions to the understanding of manifolds in the mid-19th century. He 
introduced the concept of a Riemannian manifold, which is a manifold equipped with a metric tensor. This allowed for 
the study of curved spaces and paved the way for Einstein's theory of general relativity. 
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2.3. Topology and Differentiable Manifolds 

In the early 20th century, Henri Poincaré and others developed the field of topology, which deals with properties of 
spaces that are preserved under continuous deformations. This led to the concept of a topological manifold. Later, the 
notion of a differentiable manifold emerged, which is a manifold where smoothness can be defined. 

Manifold learning is a relatively recent development in the field of machine learning and data analysis, emerging in the 
late 20th and early 21st centuries. Its key milestones. 

2.4. Early Dimensionality Reduction Techniques 

The need for dimensionality reduction techniques arose as datasets grew larger and more complex. Classical methods 
such as Principal Component Analysis (PCA) and Multi-Dimensional Scaling (MDS) were developed to reduce the 
dimensionality of data while preserving important properties. However, these methods often struggled with nonlinear 
and non-Euclidean data. 

2.5. Nonlinear Dimensionality Reduction 

In the late 1990s and early 2000s, researchers began exploring methods specifically designed to handle nonlinear data. 
One influential technique was Isomap (Isometric Mapping), introduced by Tenenbaum, de Silva, and Langford in 2000. 
Isomap aims to recover the underlying low-dimensional manifold structure of high-dimensional data by preserving 
geodesic distances embedded in the high-dimensional space. 

2.6. Further Developments 

Since the early 2000s, manifold learning has continued to evolve with the introduction of various algorithms and 
techniques, including t-distributed Stochastic Neighbour Embedding (t-SNE), Laplacian Eigenmaps, and Diffusion Maps. 
These methods offer different approaches to capturing the intrinsic structure of high-dimensional data and have found 
applications in fields such as computer vision, bioinformatics, and natural language processing. Over the years, 
mathematicians have extended the theory of manifolds to include more general structures such as complex manifolds, 
Symplectic manifolds, and algebraic varieties. These developments have found applications not only in mathematics but 
also in theoretical physics, computer graphics, and many other fields. 

 

Figure 2 Sampling on a domain manifold 

Overall, the historical background of manifold learning reflects a progression from linear techniques to more 

sophisticated methods capable of capturing the nonlinear and manifold structures present in complex datasets. Today, 

manifolds play a crucial role in various branches of mathematics and have applications in diverse areas of science and 

engineering. They provide a framework for understanding the geometry and topology of spaces of different dimensions 

and structures. 
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3. Preliminary 

Differential Manifold, Kähler manifold, Topological manifold, CK Manifold, Contact manifold, Riemannian manifold, 
Smooth manifold, Symplectic manifold, Finsler manifold, Algebraic manifold, Non-orientable manifold, Recurrent 
manifold, weakly symmetric manifold, Pseudo Symmetric manifold, Analytic Manifold and Complex Manifold. 

3.1. Differential Manifold 

A differential manifold is a mathematical object that locally resembles Euclidean space but may have a more complicated 
global structure. Formally, it is a topological space where every point has a neighbourhood homeomorphic to an open 
subset of Euclidean space R and these homeomorphic are compatible under change of coordinates. This structure allows 
for the study of smooth functions, vectors, and other geometric concepts. 

In other word, Manifold is said to have n dimension if all of dimension n have connected components.Here also called 2 
-dimensional manifold a surface, 1- dimensional manifold is a curve. 

3.2. Embedding 

An embedding is a way to represent data, typically high-dimensional data such as words, images or documents, in a 
lower-dimensional space where relationships between the data points are preserved. Some common types are showing 
below Isometric embedding, conformal embedding smooth embedding, topological embedding etc. 

There are various types of embedding used in machine learning and natural language processing (NLP), including word 
embedding (such as word2vec, GloVe, and FastText), sentence embeddings (like universal sentence encoder and 
InterSent), and contextual embedding (such as BERT, GPT, and RoBERTa). Each type serves different purposes and has 
its own advantages and limitation. 

Example: Subspaces of R to the power of n are among the most well-known examples of manifolds. Multivariable 
functions will be covered in a third semester applied calculus course in the United States. Vector fields, two dimensional 
surfaces, and volume under the following set of variables, for example, all of these wellbehaved objects are excellent 
examples of manifolds. 

4. An Overview on Machine Learning: 

When using Manifold learning approaches a learning process is usually involved with the goal of improving performance 
measure over time through experience in order to execute a task. Following the learning process the trained model can 
be used to classify predict or cluster new example based on the experience gained throughout the traning phase. Various 
statistics and mathematical models are used to calculate the performance of ML model and alogaritham. Fig (2) shows 
a typical ML approach. 

 

Figure 3 A typical machine learning Approach 

4.1. Linear Manifold Learning 

Linear manifold learning, also known as linear dimensionality reduction, refers to a class of techniques used in machine 
learning and data analysis to reduce the dimensionality of high-dimensional data while preserving as much relevant 
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information as possible. The term "manifold" refers to a lower-dimensional subspace or surface embedded within the 
high-dimensional space where the data resides. Linear manifold learning methods seek to find a linear transformation 
of the original data into a lower-dimensional space, typically by identifying a set of linear combinations of the original 
features that capture the essential structure of the data. Examples of linear manifold learning techniques include 
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). These methods are widely used for 
visualization, Noise reduction, and feature extraction in various applications such as image processing, Natural language 
processing, and signal processing. 

4.1.1. Term 1: Principal Component Analysis (PCA): 

Principal component analysis (PCA) is one of the most classical methods in dimensional reduction. Principal component 
analysis (PCA) is also called as the Karhunen-Loeve Transform (KLT) or singular value decomposition (SVD). The key 
idea of principal component analysis (PCA) is to find the low-dimensional linear subspace which Apprehend the greatest 
proportion of the modification within the data. 

PCA considers the second order statistics of a random vector X belongs to ℜn. Let X1,….XN denote N samples from such a 
random vector. Let ohm denote the variance-covariance matrix of the random vector X, i.e., VAR(X) = E {[X-e(X)] [X-
E(X)] T} =Ω. 

Assume the symmetric and positive-semi definite matrix Ω has the following Eigen-decomposition: 

Ω=VDVT, 

Where V ϵ ℜ n..nis an orthogonal matrix (VTV = In), and D is a diagonal matrix, 

𝐷 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆𝑛

] 

The diagonal entries of D, 0 ≤λn≤ λn-1≤…….≤λ1, are the ordered eigenvalues of Ω. The columns of V, V=(V1, V2…Vn)are 
the associated eigenvectors. From the following matrix computation, we observe thatλ1,λ2, …, and λk are the variances 
of the transformed random variables 

V1 TX,……V2TX……VkTX 

Cov ([V1T X, V2T,…….VnTX]) = Cov (VTX) 

= VT Cov(X) V 

= D 

It is possible prove the projection X tensed to [V1 ………..Vk ]T X from ℜn to ℜk(k<n) keeps the greatest possible of 
variation in the data this sample only available the variance –covariance matix can be estimated 

 

Where  

PCA gives a natural dimension reduction. Consider an extreme case: if all the data lie in a low dimensional linear 

subspace of a very high dimensional space, then PCA will find such a linear subspace, because the variations in the 

directions that are orthogonal to the embedded linear subspace will be equal to zero. 

The requirement that the embedded subspace be linear is a clear drawback of PCA; for a instance if the data are situated 
on a circle is 3D PC will not able to recognize such a structure. Mathematically speaking, PCA is a problem of finding the 
largest eigenvalues. We will demonstrate later that many algorithms ultimately lead to a matrix problem that is 
associated with eigenvalues, including MDS, LLE, Laplacian eigenmaps, and LTSA. 
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4.1.2. TERM: 2 Semi- Classical Method: Multi-Dimensional Scaling (MDS) 

The acronym MDS refers to a collection of techniques with a broad variety of uses. The main idea is to map a high-
dimensional space to a low-dimensional space in a way that optimally preserves the pairwise distances between the 
observed points. One logical illustration is to retrieve the relative locations of the cities based on the distances between 
them. Let's say that N cities' precise coordinates (locations) are lost. The driving distances between pairs of them are 
available to us, though. An array of these distances is created. With the help of this matrix, MDS is able to reconstruct a 
2-D coordinate system with the positions of these cities. However, due to stiff motion a mix of rotation, shifting, and 
reflection. 

4.2. Non linear manifold learning 

Next, we go over a few algorithmic methods that have shown to be useful in the research of nonlinear manifold learning: 
Hessian Eigenmaps, Local Linear Embedding, Laplacian Eigenmaps, Diffusion Maps, Isomap, and the various nonlinear 
PCA variants. 

4.2.1.  TERM 1: Isomaps 

All pairs of points between geodesic distances preserved are known isomaps. This the other method of non linear 
dimension reduction. The isometric feature mapping algorithm (Tenenbaum, de Silva, and Langford, 

2000) Suppose that the smooth manifold M is a convex region of ℜt (t  r) and that the embedding ψ: M → Y is an 
isometry. This assumption has two key ingredients 

 

Figure 4 Left panel: The S-curve, a two-dimensional S-shaped manifold embedded in three-dimensional space. Right 
panel: 2,000 data points randomly generated to lie on the surface of the S-shaped manifold 

 Isometry: Invariant under the geodesic distance the map ψ. For any pair of points on the manifold,z, z′ ∈ M, the 

geodesic distance between those points equals the Euclidean distance between their corresponding 

coordinates, x x′ ∈ X that is 

dm(z,z′ )=║x-x′║X 

where z = φ(x) and z ′ = φ (x ′). 

 Convexity: The convex subset of a ℜt is the manifold M. 

4.2.2. TERM2: Generative Topological Mapping (GTM) 

An inspiring nonlinear dimension. Dimension reduction method All pairs of points between geodesic distances 
preserved are known Isomaps is known as GTM. While GTM formulation emphasis certain important elements of 
contemporary dimension reduction they do not contain the method that will be introduced later. Let t be the data space 
and X be a point in latent space. Let t1 t2…….tn indicated that the observed point tiis generated based on the following: 

 First there is a quantity xi associated with ti in the latent space has much lower dimension than the data space. 

 There is a mapping x tending to y (x, U) that has complete column rank in its Jacobin and its continuously 

differentiable from the latent space to the data space. The parameters of this mapping are indicated by the letter 
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U. In reality, one can assume that the picture y (x, U) for any x form a low dimensional manifold in the data 

space. 

 Consider that the observation ti is generated according to the model 

ti = y(xi ;U) + εi ,i=1,2,…….N 

Thus, GTM takes an implicit manifold to exist. U and β are parameters that are unknown. Although they exist, the latent 

variables are not known xi. The authors of GTM presented an EM based method to estimate the above model by assuming 

a particular distribution for the xi's and putting the problem in a Bayesian model estimating framework (Bishop, 

Svensen, and Williams, 1998). The process of determining a maximum a posteriori (MAP) estimate results in the 

dimension reduction. 

GTM considers a prior p(x) for the xi ’s. This prior is a sum of a finite number of Dirac functions, i.e. 

𝑝(𝑥) = ∑ 𝛿𝑘
𝑖=1 (𝑥 − 𝑥�̅�) 

Where x1, x2, …, xk are k given points in the latent space. According to the previous way of generatingt i, there is a 
probability density function for t: p (tǀx; U, β). The density function on the data space is simply  

p (tǀU, β) = ʃ p (t ǀ x, U, β) p(x)dx 

Given that p(x) is a sum of k Dirac functions, we have 

𝑘 

𝑝 (𝑡ǀ𝑈, 𝛽) = ∑ 𝑝 (𝑡 ǀ�̅�̅ 𝑖  , 𝑈, 𝛽) 

𝑖=1 

The principle of maximum likelihood estimation (MLE) is to find U and β such that the log-likelihood function  

 

is maximized. The authors of GTM (Bishop, Svensen, and Williams, 1998) proposed an expectation maximization (EM) 

approach to estimate U and β. Here we omit some of the technical details regarding how to choose the functional classes 

in the nonlinear mapping. The numerical solution of GTM is based on a strong assumption on the prior. 

The way the EM algorithm is applied appears haphazard. Additionally, it is challenging to defend GTM's performance. 

In actuality, GTM can only be built as an alternative to self-organizing maps (SOM) in a few specific situations, such as 

clustering. The probabilistic approach, however, is consistent with other data analysis models. 

4.2.3. TERM2: Locally Linear Embedding (LLE): 

The LLE algorithm nonlinear dimensionality reduction is comparable to the isomap algorithm in several aspects, but 

we consider LLE to be an approach rather than the global approach represented by isomap since it aims to maintain 

local neighbourhood information on the manifold. Locally Linear Embedding (LLE): Another important milestone in 

manifold learning is the development of Locally Linear Embedding (LLE) by Roweis and Saul in 2000. LLE seeks to 

preserve the local relationships between data points, assuming that the data lie on or near a low-dimensional manifold 

embedded in the high-dimensional space. 
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5. Application of manifold 

5.1. Mesh Generation: Modelling with multiple charts 

It could be challenging to obtain enough coordinate precision far from the origin since the distances between floating 
point numbers grow with their magnitude. Avoiding circumstances where there are minute details that are distant (in 
a coordinate sense) from the source is an easy strategy to solve this issue. With a single coordinate system, this may be 
exceedingly challenging, but Generalization C states that the manifold directs us to divide the domain into subdomains, 
cover each subdomain with its create your own coordinate system, then position each coordinate system's origin to 
maximize precision. Multiple charts are helpful not only for mesh generation but also for enhancing accuracy other 
calculations made throughout solution process. A multiple chart example is presented in Figure This tactic is also 
discussed. 

 

 

Figure 5 Isovalue lines of potential of the power in 
the non-standard parameterisation 

Figure 6 Isovalue lines of potential of the power line in the 
Line Standard parameterisation 

This is the one and the same field as in Fig (4) but just shown with another chart. 

Let's talk a little more about the multiple charts-strategies actual use. Although it will limit us to manifolds that can be 

embedded into the n-dimensional space, it is reasonable to assume that the user first provides, or at least implicitly 

assumes, a single Rn chart that is a standard parameterization and covers the entire manifold. The material parameters 

are given with respect to such chart. 

 

Figure 7 Example of multiple chart 

Top: standard parameterization that covers whole manifold 

Bottom: Two charts that span half of the domain are required to overlap only at their shared border according to 
convential parameterization, which also causes the origin and scale to be altered. 
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5.2. Machine learning in agriculture 

A total of twenty-one articles were published in the journals Computer and Electronics in Agriculture, 

Sustainability Real-Time Imagining, Precision Agriculture, Earth Observations. 

Scientific Reports, Computers in Industry, and Sensors. Six articles were published in the journal Bio Systems 
Engineering. The majority of the papers are about using machine learning (ML) in crop management, although eight of 
the articles are about using ML in livestock management, four are about using ML in water management, and four are 
about using ML in soil management. shows how the articles are distributed in relation to the specified subcategories 
and these application domains. 

 

Figure 8 Pie chart presenting the papers according to the application domain 

More precisely, five machine learning models were used in crop management techniques, with ANNs being the most 
widely used model (with wheat being the most common crop at hand). Four machine learning models were applied to 
the livestock management category; SVMs, which represent the most common type of livestock at hand cattle were the 
most widely used model. Two machine learning models were used for water management, specifically 
evapotranspiration estimation, with artificial neural networks (ANNs) being used most frequently.  

5.3. Forecasting the course of brain tumors using a manifold learning algorithm 

In 2011, the Texas University medical imaging department, in collaboration with the Anderson MD Oncology Center in 
Texas, unveiled a novel approach to multimodal learning. This study aims to propose a suitable technique for precisely 
diagnosing a low dimensional manifold associated with desired data structure.  

The project's desired data collection is crucial for the diagnosis of brain tumors. As a result, MRI scan collections are 
included in data collecting. The goal of this study is to identify a manifold with a lower dimension that represents tumor, 
recovered, and healthy tissues. Furthermore, survey and research in the area of determining the interaction between 
tumor and healthy tissues are our top priorities. Through the charting of the manifold bridge that connected to Tumor 
progression can be seen in up to two consecutive MRI pictures, aids in overseeing the patient’s treatment regimen in 
this way. The theory put out in article is guaranteed and supported by the early stages of this study's results. In the 
lower space, manifolds associated with tumor and healthy tissues are detachable. Additionally, between these 
manifolds, the manifold associated with the progression of tumor tissue is located closer to the tumor tissue. 

 



International Journal of Science and Research Archive, 2024, 12(01), 394–404 

403 

 

Figure 9 Block diagram of the application of Manifold learning for detection of Tumor progression 

6. Conclusions 

Learning the structure of a manifold is important when dealing with high dimensional data, like those from images and 
videos, that lie on or near a manifold of a lower dimensional space. This chapter provides an overview of the various 
methods that have been proposed for manifold learning. First we review the notations of a smooth manifold using 
fundamental concepts from topology and differential geometry to learn a linear manifold. Next we describe the global 
in imbeddings algorithm of principal component analysis and multidimensional scaling in the certain situations. Finally, 
we describe how linear methods will work to find the structure of a curved or non-linear manifold in certain situations. 

We believe that by providing a thorough overview of manifold-based learning methods and highlighting their 
mathematical formulations, we will shed light on the ways in which these approaches are similar to an another and 
highlight the shared theoretical framework that will serve as the foundation for research in this field we also hope that 
this article will inspire new avenues for research in this field and draw attention to the theoretical analysis of manifold-
based learning methods.  
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