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Abstract 

This paper presents an in-depth analysis of a Gallium Nitride (GaN) Dual Active Bridge (DAB)-based on-board battery 
charger for electric and hybrid vehicles. It focuses on the superior efficiency and reliability of GaN-based power 
electronics over traditional Silicon-based systems. The study explores the implementation of the DAB topology, 
recognized for its bidirectional power flow and high efficiency, in enhancing vehicle charging infrastructure. Efficiency 
analysis, switching behavior and losses are thoroughly examined. Simulation results in PSIM software validate the 
theoretical predictions, showing significant improvements in operational flexibility and energy efficiency. 
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1. Introduction

In the rapidly evolving landscape of electric and hybrid vehicles (EVs and HVs), the efficiency and reliability of charging 
systems have become critical factors in advancing automotive technology and promoting wider adoption of these eco-
friendly transportation modes. Among the myriad of technologies being explored, Gallium Nitride (GaN) based power 
electronics have emerged as a ideal innovation, offering superior performance characteristics compared to traditional 
Silicon-based systems [1-5]. The on-board battery charger is a cornerstone component of EVs and HVs, dictating the 
vehicles' charging speed, energy efficiency, and operational flexibility. The Dual Active Bridge topology (DAB), 
renowned for its bidirectional power flow capability and high efficiency, provides an ideal framework for exploiting 
GaN's high switching frequency, low on-resistance, and exceptional thermal performance. This analysis aims to unravel 
the technical intricacies and potential benefits of integrating GaN technology into DAB chargers, focusing on aspects 
such as efficiency improvements, power density, thermal management, and the impact on the vehicle's overall charging 
infrastructure. 

In addition, the conversion of electrical energy plays a key role in many aspects of modern society, from consumer 
electronics to high-power applications [6]. In the latter case, efficiency, harmonic quality, power density demands, 
among other requirements, have triggered the development of advanced electronic adjustable-speed drives (ASDs) and 
sophisticated power semiconductors. More precisely, the use of medium-voltage (MV)-ASDs has been a key technology 
for high-power applications such as fans, pumps, conveyor belts, propellers, crushers, photovoltaic systems, wind 
turbines, static compensators, and so on. Further improvements in power semiconductor and converter technologies 
have allowed the replacement of load-commutated inverters (LCIs), which are still used for output powers in the tens-
of-megawatt range, with self-commutated converters. The increased demand for intermediate storage of electrical 
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energy in battery systems, particularly due to the use of renewable energy, has resulted in the need for bidirectional 
DC/DC power converters with galvanic isolation [7-8]. Uninterruptible Power Supplies (UPS), battery charging systems 
[9], photovoltaic systems [10-14], and auxiliary power supplies in traction applications are examples of some fields of 
application of this kind of converter. A Dual Active Bridge (DAB) bidirectional DC/DC converter is a topology with the 
advantages of fewer devices, soft-switching commutations [15-16], low cost, and high efficiency. The use of this topology 
is proposed for applications where power density, cost, weight, and reliability are critical factors. In the present paper, 
the steady-state analysis of the DAB converter has been carried out, providing some guidelines for design (considering 
soft switching and the amount of RMS current) and modulation techniques for DAB topology are discussed with 
providing simulations results in PSIM. 

2. Dual-Active-Bridge Topology, and its Modulations 

The two-level dual-active bridge is a bidirectional and controllable DC-DC converter with substantial power capabilities 
[17]. Figure 1 shows the structure of DAB with eight semiconductor devices, a high-frequency transformer, an energy 
transfer inductor, and DC-link capacitors where the converter resembles a more common full bridge with a controllable 
rectifier. Its symmetrical design, featuring identical primary and secondary bridges, enables bidirectional power flow 
control. The interconnected full bridges, linked by a high-/medium-frequency transformer for galvanic isolation, 
facilitate power transfer through the transformer's leakage inductance. Controlled switching actions generate square 
voltages namely VT1 and VT2 on both sides, enhancing efficiency compared to hard-switched topologies. This design 
achieves higher switching frequencies without excessive losses, particularly with soft switching. 

 

Figure 1 The structure of dual active bridge 

At elevated frequencies, the isolation transformer's magnetizing inductance diminishes, simplifying the model to its 
leakage inductance and reducing weight for easier transport. Figure 2 illustrates an equivalent system used to derive 
the power equation. Additionally, the dual-active bridge's bidirectional nature makes it suitable for energy storage 
applications, such as linking batteries in automotive use [18-19]. 

 

Figure 2 The equivalent circuit of dual active bridge in high frequencies 

There are various modulation techniques for DAB converters including single-phase-shift (SPS) control, dual-phase-
shift control, extended-phase-shift control, triple-phase-shift control, as well as trapezoidal, triangular, and optimized 
modulation methods. The single-phase-shift modulation and the trapezoidal modulation scheme are chosen for 
modeling, simulation, and testing in PSIM® software. In a DAB converter, three parameters affect power flow between 
primary and secondary sides: phase-shift between square voltages, duty cycle of square voltages, and switching 
frequency [20-21]. The modulation techniques considered here involve changes in phase-shift and/or duty cycle to 
control power flow, while frequency switching methods are excluded from consideration in this study. The single-phase-
shift modulation only uses a phase shift between the two transformer voltages to control the power flow, while the 
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trapezoidal modulation uses a phase shift and additionally changes the duty ratio of the transformer voltages, 
introducing a zero-voltage period. The zero-voltage period is attained by introducing a phase shift between the two legs 
of each full bridge [22].  

2.1. Single-Phase-Shift Modulation 

The SPS control is the standard modulation scheme for the DAB and describes a classical method to implement a voltage-
controlled DC-to-DC converter. The method is easy to implement and shows excellent control performance, but the 
overall efficiency is not sufficient. The square voltages in a circuit that is modulated with this scheme will always have 
duty cycles of 50% of the switching period while the frequency stays constant [23]. Two square voltages 𝑉𝑇1 and 𝑛𝑉𝑇2 
are generated on the primary and secondary side of the transformer by giving respective switching signals to the 
switches Q1 to Q8. A phase-shift 𝜑 is introduced between the switching signals for the primary side and the switching 
signals for the secondary side, leading to the same phase-shift 𝜑  between the two voltages 𝑉𝑇1  and 𝑛𝑉𝑇2 . A voltage 
difference is induced and a current flow from the primary to the secondary side. This is shown in Figure 3. There are 
four commutation states of the power switches to achieve the SPS modulation method which are shown in Figure 4 and 
Table1. 

 

Figure 3 Primary and referred secondary transformer voltage and inductor current for the single-phase-shift 
modulation 

 

 

Figure 4 Switching signals for the gates Q1 to Q8 
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Table 1 Commutation sequence of switches for the SPS modulation 

𝑸𝟏 𝑸𝟐 𝑸𝟑 𝑸𝟒 𝑸𝟓 𝑸𝟔 𝑸𝟕 𝑸𝟖 𝑽𝑻𝟏 𝒏𝑽𝑻𝟐 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏 

1 0 0 1 0 1 1 0 +𝑉𝑇1 −𝑛𝑉𝑇1 𝑇1 

1 0 0 1 1 0 0 1 +𝑉𝑇1 +𝑛𝑉𝑇1 𝑇2 

0 1 1 0 1 0 0 1 −𝑉𝑇1 +𝑛𝑉𝑇1 𝑇3 

0 1 1 0 0 1 1 0 −𝑉𝑇1 −𝑛𝑉𝑇1 𝑇4 

2.2. Trapezoidal Modulation 

Equal to the single-phase-shift modulation [24], the two transformer voltages will be phase-shifted in the trapezoidal 
modulation scheme. In addition to that, two inner phase shifts are introduced between the two legs of each full bridge. 
This causes the duty cycle of and to change and introduces a period during which and will be zero [25]. These intervals 
are named 𝜔1 and 𝜔2 can be seen in Figure 5. It is notable that the on and off times of the switches continue to equal 
50% of one switching period, and it is only the duty cycles of the transformer voltages that change. There are eight 
commutation states of the power switches to achieve the trapezoidal modulation method which are shown in Figure 6 
and 7. Commutation sequence of switches for the Trapezoidal modulation is tabulated in Table 2. 

 

Figure 5 Primary and referred secondary transformer voltage and inductor current for the trapezoidal modulation 

 

 

Figure 6 Switching signals for the gates Q1 to Q4 
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Figure 7 Switching signals for the gates Q5 to Q8 

 

Table 2 Commutation sequence of switches for the Trapezoidal modulation 

𝑸𝟏 𝑸𝟐 𝑸𝟑 𝑸𝟒 𝑸𝟓 𝑸𝟔 𝑸𝟕 𝑸𝟖 𝑽𝑻𝟏 𝒏𝑽𝑻𝟐 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏 

0 1 0 0 0 1 1 0 0 −𝑛𝑉𝑇1 𝑇1 

1 0 0 1 0 1 0 1 +𝑉𝑇1 0 𝑇2 

1 0 0 1 1 0 0 1 +𝑉𝑇1 +𝑛𝑉𝑇1 𝑇3 

1 0 1 0 1 0 0 1 0 +𝑛𝑉𝑇1 𝑇4 

0 1 1 0 1 0 1 0 −𝑉𝑇1 0 𝑇5 

0 1 1 0 0 1 1 0 −𝑉𝑇1 −𝑛𝑉𝑇1 𝑇6 

2.3. Triangular Modulation 

 

Figure 8 Primary and referred secondary transformer voltage and inductor current for the triangular modulation 

The triangular modulation is a special case of a trapezoidal modulation. The current ramped to achieve zero-current 
switching on one full bridge. This modulation is only possible, if the two input voltages 𝑉𝑖𝑛 and 𝑉𝑜  are different [26]. But 
if one of the two voltages is equal to zero, this method cannot be used. The variables for controlling the power flow are 
the phase-shift angle between primary and secondary transformer voltage as well as a change in duty ratio of these 
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voltages [27]. In distinction from the trapezoidal modulation scheme, in the Triangular modulation features two time 
periods during which both square voltages 𝑉𝑇1 and 𝑛𝑉𝑇2 are zero. This results in two-time intervals with zero inductor 
current 𝑖𝐿  as can be seen in Figure 8. There are eight commutation states of the power switches to achieve the 
trapezoidal modulation method which are presented in Figures 9 and 10 and the commutation sequence of switches 
are tabulated in Table 3. 

 

Figure 9 Switching signals for the gates Q1 to Q4 

 

 

Figure 10 Switching signals for the gates Q5 to Q8 

Table 3 Commutation sequence of switches for the Triangular modulation 

𝑸𝟏 𝑸𝟐 𝑸𝟑 𝑸𝟒 𝑸𝟓 𝑸𝟔 𝑸𝟕 𝑸𝟖 𝑽𝑻𝟏 𝒏𝑽𝑻𝟐 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏 

0 1 0 1 0 1 0 1 0 0 𝑇1 

1 0 0 1 0 1 0 1 +𝑉𝑇1 0 𝑇2 

1 0 0 1 1 0 0 1 +𝑉𝑇1 +𝑛𝑉𝑇1 𝑇3 

1 0 1 0 1 0 1 0 0 0 𝑇4 

0 1 1 0 1 0 1 0 −𝑉𝑇1 0 𝑇5 

0 1 1 0 0 1 1 0 −𝑉𝑇1 −𝑛𝑉𝑇1 𝑇6 
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3.  Simulation results and discussion 

The model of the DAB can be built in PSIM®. Parameters that are defined in the Simulation Parameter Initialization 
dialogue in PSIM® are given in Table 4. The definition of certain parameters will be explained in the following sections. 
A schematic of the PSIM® model is presented in Figure 11 and 12. 

 

Figure 11 Schematic of the DAB model in PSIM® for the SPS Modulation 

 

 

Figure 12 Schematic of the DAB model in PSIM® for the Trapezoidal Modulation 

After modeling the Dual-Active-Bridge and the two modulation schemes in PSIM®, we can now analyze and compare 
these two modulation methods. The output voltage Vo ranges between 250 V and 400 V, with the load case considered 
at full load for the respective output voltage. Each modulation scheme is simulated individually, and the results of each 
case are compared and evaluated based on RMS inductor current, total losses of the semiconductor switches, overall 
efficiency, switching losses, and soft-switching range. 

 

 



International Journal of Science and Research Archive, 2024, 12(01), 216–230 

223 

Table 4 Simulation Parameter Initialization 

Specifications Parameter Value 

Input Voltage 𝑉𝑖𝑛 400 V 

Output Voltage 𝑉𝑜  250 V - 400 V 

Maximum Input Power 𝑃𝑖𝑛_𝑚𝑎𝑥  1.8 KW - 3.1 KW 

Switching Frequency 𝑓𝑠 100 KHz 

Primary Number of Turns 𝑁1 1 

Secondary Number of Turns 𝑁2 1 

Turn Ratio 𝑛 1 

On-Resistance 𝑹𝑫𝑺(𝒐𝒏) 𝑅𝑜𝑛_𝐿𝑉 35 mΩ 

On-Resistance 𝑹𝑫𝑺(𝒐𝒏) 𝑅𝑜𝑛_𝐻𝑉 35 mΩ 

Leakage Inductance 𝐿 43 𝜇𝐻 

Output Capacitance 𝐶 470 𝜇𝐹 

3.1. Single-Phase-Shift Modulation 

In Figures 33 and 31, the DAB is subjected to an output voltage ranging between 250 V and 400 V. All waveforms exhibit 
the theoretically expected behavior illustrated in Figure 3. It is evident that the current slope increases as the output 
voltage decreases, and the current value decreases accordingly due to the reduction in maximum output power. 

 

 

Figure 31 Primary and referred secondary transformer voltage 𝑽𝑻𝟏 and 𝒏𝑽𝑻𝟐 and respective inductor current 𝒊𝑳 and 
the output power at 𝑽𝒐 = 𝟒𝟎𝟎 𝑽 with SPS Modulation 
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Figure 31 Primary and referred secondary transformer voltage 𝑽𝑻𝟏 and 𝒏𝑽𝑻𝟐 and respective inductor current 𝒊𝑳 and 
the output power at 𝑽𝒐 = 𝟐𝟓𝟎 𝑽 with SPS Modulation 

3.2. Trapezoidal Modulation 

The waveforms from the simulation of the trapezoidal modulation exhibit the expected behaviour outlined in Figures 
15 and 16. Like SPS Modulation, the current value decreases as the load decreases. According to the equations in the 
Trapezoidal Modulation section, the zero-voltage widths ω1 and ω2 decrease with a decreasing phase-shift angle, while 
the duty cycles increase. Furthermore, the current slope alternates in the third time interval when (Vin−nVo) is applied, 
depending on the relationship between Vin and nVo, as described in the Trapezoidal Modulation section. 
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Figure 15 Primary and referred secondary transformer voltage 𝑽𝑻𝟏 and 𝒏𝑽𝑻𝟐 and respective inductor current 𝒊𝑳 and 
the output power at 𝑽𝒐 = 𝟒𝟎𝟎 𝑽 with Trapezoidal Modulation 

 

 

Figure 16 Primary and referred secondary transformer voltage 𝑽𝑻𝟏 and 𝒏𝑽𝑻𝟐 and respective inductor current 𝒊𝑳 and 
the output power at 𝑽𝒐 = 𝟐𝟓𝟎 𝑽 with Trapezoidal Modulation 

4. Comparison of Single-Phase-Shift and Trapezoidal Modulation: 

4.1. RMS Inductor Current 

In the following, Figure 17, the course of the RMS inductor current is depicted for the different output voltages in full 
load condition. It can be noted that by decreasing the output voltage, the current value decreases with decreasing load. 
It is apparent that, the Single-Phase-Shift Modulation presents higher RMS current values than the Trapezoidal 
Modulation.  
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Figure 17 RMS inductor current at different output voltage in both SPS Modulation and Trapezoidal Modulation 

4.2. Total Losses and Efficiency 

Figure 18 displays the total losses, while Figure 19 illustrates the corresponding efficiencies of the constructed model. 
These losses comprise switching losses and conduction losses of the semiconductor switches. It's evident that total 
losses decrease with a decrease in output voltage and consequently with a decrease in load. As anticipated from the 
RMS current trends, the total losses in Trapezoidal Modulation are slightly larger than those in Single-Phase Shift 
Modulation. Consequently, it's observable in Figure 19 that SPS Modulation yields better efficiency than Trapezoidal 
Modulation. For lower output voltage values, the figures indicate that despite having fewer total losses, efficiency is 
reduced. This outcome can be elucidated by examining the distribution of switching and conduction losses at various 
load levels, as presented in the subsequent section. 

 

Figure 18 Total losses at different output voltages and MOSFET switches 

Overall, the efficiency of the constructed DAB controlled via SPS Modulation ranges from 95.48% to 96.97%, depending 
on the load and voltage conditions. In contrast, if the control is executed through the Trapezoidal Modulation scheme, 
the efficiency ranges from 96.91% to 98.17%. 
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Figure 19 Efficiency at different output voltages and MOSFET switches 

4.3. Switching Behaviour 

Based on the simulations depicted in Figures 20 and 21, which illustrate the switching behaviors in SPS Modulation and 
Trapezoidal Modulation when Vo=400 V, we can observe the switching behavior consistent with our previous 
discussions in both modulation schemes. 

 

(a) 

 

(b) 

Figure 20 Switching behavior for: (a): 𝑸𝟏 to 𝑸𝟒 (b): 𝑸𝟓 to 𝑸𝟖 in the SPS Modulation in full load when 𝑽𝒐 = 𝟒𝟎𝟎 𝑽 
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(a) 

 
(b) 

Figure 21 Switching behaviour for: (a): 𝑸𝟏 to 𝑸𝟒 (b): 𝑸𝟓 to 𝑸𝟖 in the Trapezoidal Modulation in full load when 𝑽𝒐 =
𝟒𝟎𝟎 𝑽. 

4.4. Switching Losses 

Generally, it is evident that the percentage shares of switching losses relative to total losses increase with decreasing 
load. This is because the current, and consequently, the absolute value of conduction losses decrease. Additionally, SPS 
Modulation and Trapezoidal Modulation exhibit different characteristics regarding soft switching, as discussed in 
previous sections. Based on these observations, Trapezoidal modulation is expected to demonstrate a lower proportion 
of switching losses compared to SPS modulation. This assumption is supported by Figure 22, where at Vo=250 V, the 
switching losses with Trapezoidal Modulation account for only around half of the switching losses in SPS Modulation. 
This behavior is reflected in the overall efficiency at all loads. Moreover, as shown in Figure 17, the RMS inductor current 
in Trapezoidal Modulation is consistently smaller than in SPS Modulation. This results in smaller absolute values of 
conduction losses in Trapezoidal Modulation compared to SPS Modulation. 

 

Figure 22 Total Switching Losses in both SPS Modulation and Trapezoidal Modulation in full load when the output 
voltage varies 

5. Conclusion 

The research confirms that integrating GaN technology into DAB-based on-board battery chargers significantly 
enhances the performance of charging systems in electric and hybrid vehicles. The use of GaN results in higher efficiency 
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and better thermal management compared to traditional Silicon-based systems. The simulations demonstrate that both 
Single-Phase-Shift and Trapezoidal Modulation methods can be effectively implemented, with Trapezoidal Modulation 
providing slightly better efficiency under varying load conditions. This study not only highlights the technical benefits 
of using GaN in DAB configurations but also suggests its practical implications for future automotive designs, promoting 
the adoption of more energy-efficient and high-performance charging solutions in the transportation sector. Future 
work could explore the long-term durability and cost-effectiveness of GaN-based systems to further validate their 
commercial viability. 
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