
* Corresponding author: Balaji Dhashanamoorthi

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Analyzing detection algorithms for cybersecurity in financial institutions 

Balaji Dhashanamoorthi * 

Individual Researcher, Chennai, India. 

International Journal of Science and Research Archive, 2024, 11(02), 558–568 

Publication history: Received on 08 February 2024; revised on 16 March 2024; accepted on 19 March 2024 

Article DOI: https://doi.org/10.30574/ijsra.2024.11.2.0478 

Abstract 

Frauds in financial services are an ever-increasing phenomenon, and cybercrime generates multimillion revenues. Even 
a small improvement in fraud detection rates would lead to significant savings. Traditional rule-based systems have 
limitations in blocking potentially fraudulent transactions. This chapter explores how machine learning, specifically 
supervised and unsupervised learning, can address these limitations more effectively. 

We present a novel AI-based fraud detection system that combines supervised and unsupervised models. In the batch 
layer, transaction data undergoes pre-processing and model training, while the stream layer handles real-time fraud 
detection based on new input transaction data. The architecture automates fraud detection processes, making it a 
valuable tool for supporting fraud analysts. 

This research aims to enhance cybersecurity in financial institutes by leveraging the power of AI and machine learning. 
The integration of supervised and unsupervised models provides a robust defense against cyber faults, ensuring the 
safety of financial transactions. 

Keywords: Artificial intelligence; Fraud detection; Real-time analysis; Machine learning; Automation; Supervised 
learning; Unsupervised learning 

1. Introduction

In today’s interconnected digital landscape, financial institutes face relentless cyber threats that jeopardize data 
security, financial stability, and customer trust. As cybercriminals evolve their tactics, the need for robust defense 
mechanisms becomes paramount. This journal explores the application of supervised and unsupervised 
learning techniques to prevent and mitigate cyber faults within financial institutions. 

Cyber security is a crucial issue in the modern world, as various cyberspaces are used by criminals to conduct 
cybercrime and cyber threats. To cope with these challenges, the banking and financial industry has adopted artificial 
intelligence (AI) as a promising technology that can perform various functions associated with human minds, such as 
reasoning, learning, interacting, creating, perceiving, and problem-solving. AI can also handle large volumes of 
structured and unstructured data, extract useful patterns and insights, and control individual human behavior, 
inference methods, and knowledge representation. However, AI also has some limitations and risks, such as ethical, 
legal, social, and technical aspects. This paper aims to explore the applications and implications of AI in the context of 
cyber security and cybercrime prevention. It will discuss the various methods and techniques of AI that are used to 
execute various tasks and solve problems related to cyber security. It will also analyze the benefits and drawbacks of AI 
in the banking and financial sector, and suggest some ways to improve the performance and reliability of AI systems. 
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Intrusion Detection Systems (IDS) play a critical role in identifying and preventing malicious activities within networks, 
including smart grids. However, these very systems are often prime targets for cyber-attacks. Researchers have 
proposed various approaches to classify and detect such attacks, with supervised machine learning being a common 
method. Nevertheless, these supervised models rely on extensive labeled datasets for training and evaluation. In this 
study, we compare the performance of supervised and unsupervised learning models in detecting cyber-attacks. The 
supervised models include Gaussian Naïve Bayes, Classification and Regression Decision Tree, Logistic Regression, C-
Support Vector Machine, Light Gradient Boosting, and Alex Neural Network. Conversely, the unsupervised models 
consist of Principal Component Analysis, K-means, and Variational Autoencoder. Our evaluation considers accuracy, 
probability of detection, probability of misdetection, probability of false alarm, processing time, prediction time, training 
time per sample, and memory size. The results indicate that the Alex Neural Network model outperforms other 
supervised models, while the Variational Autoencoder model exhibits superior performance among the unsupervised 
models. 

2. Methodology 

 

Figure 1 Supervised and Unsupervised Learning Working Flow. (A) Supervised Working Flow (B) 

The supervised model workflow encompasses several essential steps: data acquisition, dataset assessment, model 
training, and optimization. In this context, supervised models rely on labelled data, necessitating various techniques for 
data assessment, including data balancing, imputation, normalization, and encoding. Specifically, Gaussian Naive Bayes, 
Classification and Regression Decision Trees, C-Support Vector Machines, Logistic Regression, Alex Neural Network, 
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and Light Gradient Boosting are trained to identify and classify network attacks. These models are then fine-tuned using 
optimization techniques such as grid search and ADAM optimizer. 

In contrast, unsupervised models operate with an unlabelled dataset, leading to a reduced need for data assessment 
techniques. The unsupervised models—K-means, Principal Component Analysis, and Variational Autoencoder—are 
evaluated based on unknown data patterns after applying optimization techniques. 

2.1. Unsupervised Working Flow. 

Figure 1 illustrates the workflow for both supervised and unsupervised models. In Figure 1A, the supervised model 
workflow comprises several critical stages: data acquisition, dataset assessment, model training, and optimization. 
These supervised models rely on labelled data, necessitating various techniques for data assessment, including data 
balancing, imputation, normalization, and encoding. Specifically, we employ Gaussian Naive Bayes, Classification and 
Regression Decision Trees, C-Support Vector Machines, Logistic Regression, Alex Neural Network, and Light Gradient 
Boosting to detect and classify network attacks. These models are fine-tuned using optimization techniques such as grid 
search and ADAM optimizer. 

In contrast, Figure 1B depicts the use of unsupervised models with an unlabelled dataset, resulting in fewer data 
assessment techniques. Our unsupervised models—K-means, Principal Component Analysis, and Variational 
Autoencoder—are evaluated based on unknown data patterns after applying optimization techniques. For a 
comprehensive overview of materials and techniques, please refer to the following section. 

2.2. Dataset 

We used dataset from the Canadian Institute of Cyber-Security and the University of New Brunswick. This 
comprehensive dataset comprises both normal network traffic samples and instances from 10 distinct attack types. The 
corresponding sample counts for each attack type are summarized in Table 1. 

Notably, the attack classes within the dataset exhibit imbalanced distribution, which can potentially impact the accuracy 
of detection algorithms. To mitigate this issue, we established a common threshold based on the lowest number of attack 
samples—specifically, the UDP-lag attacks, which totaled 366,461 samples. Consequently, we uniformly limited the 
sample count for each attack category to this minimum value. 

For the normal samples, we randomly selected 4,000,000 instances, resulting in a final dataset containing 8,000,000 
samples. In the original dataset, a total of 88 features were present, but not all of them significantly contributed to attack 
detection. To address this issue, the authors1 employed feature reduction techniques, specifically Pearson’s Correlation 
and Tree-based feature selection. As a result, the dataset was streamlined to include only 21 relevant features, as 
detailed in Table 1. For training supervised models, this balanced dataset with labeled samples was utilized. However, 
when training unsupervised models, the labeled column was intentionally removed from the dataset. 

Table 1 List of Attacks 

Attacks Number of Samples 

Total Normal  5,693,110 

Domain Name System (DNS)  5,071,011 

Simple Network Management Protocol (SNMP)  5,159,870 

Trivia File Transfer Protocol (TFTP)  20,082,580 

Lightweight Directory Access Protocol (LDAP) 2,179,930,232 

Network Basic Input/Output System (Netbios)  4,092,937 

Microsoft SQL To Server (MSSQL)  5,781,928 

Simple Service Discovery Protocol (SSDP)  2,610,611 

Network Time Protocol (NTP)  1,202,649 

Simple Service Discovery Protocol (SSDP)  2,610,611 
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2.3. Pre-Processing 

This data preprocessing step plays a crucial role in enhancing data quality. In the context of supervised models, this step 
involves several techniques, including missing data imputation, transformation, and encoding. However, when dealing 
with unsupervised learning models, the focus narrows down to missing data imputation and transformation. 
 
To address the issue of null or missing values within the dataset, we employed a mean imputation technique. This 
method replaces missing values with the mean of all available values for that specific feature in the given dataset. 
Additionally, the provided data underwent normalization and standardization using a feature scaling technique. 
 
Specifically, the features were rescaled using the Yeo-Johnson Power Transformer. This transformation not only shapes 
the data to exhibit a more Gaussian distribution but also effectively handles zero, positive, and negative values. 

2.4. Models 

In the realm of financial systems, machine learning models play a pivotal role in detecting and mitigating cyber faults 
and fraudulent activities. Let’s explore some of the prominent machine learning approaches used for this purpose: 

1. Supervised Learning Models: 
o Decision Trees: These models create a tree-like structure to classify data based on features. Decision 

trees are interpretable and can handle both categorical and numerical data. 
o Support Vector Machines (SVM): SVMs are effective for binary classification tasks. They find a 

hyperplane that best separates different classes. 
o Artificial Neural Networks (ANN): ANNs mimic the human brain’s neural network and are adept at 

handling complex relationships in data. 
o Random Forest: An ensemble of decision trees that improves accuracy and reduces overfitting. 

2. Unsupervised Learning Models: 
o K-means: A clustering algorithm that groups similar data points together. 
o Principal Component Analysis (PCA): Used for dimensionality reduction by transforming features into 

a new coordinate system. 
o Variational Autoencoder: A type of neural network that learns efficient representations of data. 

3. Hybrid Approaches: 
o Semi-supervised Learning: Combines labeled and unlabeled data to enhance model performance. 
o Reinforcement Learning: Although less common, reinforcement learning can adapt to dynamic 

environments and learn from feedback. 

 

 

Figure 2 Classification of ML models used in this study 
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3. Supervised learning 

Supervised learning is a fundamental machine learning paradigm where the model learns from labeled data. In this 
approach, the algorithm is trained using input-output pairs, where the input (features) is associated with a known 
output (target). The goal is to learn a mapping function that can predict the correct output for new, unseen data. 
Common supervised learning algorithms include decision trees, support vector machines, neural networks, and 
regression models. These models find applications in various domains, such as classification, regression, and anomaly 
detection, making them essential tools for solving real-world problems. 

 Our chosen supervised models encompass a diverse set of algorithms, each tailored to specific tasks. Let’s delve 
into their characteristics: 

 Gaussian Naïve Bayes (GNB): A Bayesian-based model, GNB is well-suited for data following a Gaussian normal 
distribution. 

 Classification and Regression Tree (CART): This tree-based model employs the Gini index as a splitting criterion 
and cost-complexity pruning to enhance accuracy while mitigating overfitting issues. 

 C-Support Vector Machine (C-SVM): An instance-based model, C-SVM directly utilizes training data without 
preprocessing the target function. 

 Logistic Regression (LR): Falling under the regularization-based category, LR effectively fits functions to 
training data, preventing overfitting by incorporating additional information. 

 Alex Neural Network (AlexNet): A neural-network-based model with 25 layers, including input, rectified linear 
units (ReLU), convolutional, max pooling, normalization, dropout, SoftMax, and output layers. The ReLU 
activation function accelerates training while maintaining generalization abilities with lower computational 
costs –. 

 Light Gradient Boosting (LightGBM): An ensemble-based approach, LightGBM leverages three models for 
superior efficiency, faster training, reduced memory usage, and improved accuracy compared to other boosting 
models. 

4. Unsupervised learning 

Unsupervised learning plays a critical role in detecting cyber faults within financial systems. Unlike supervised learning, 
which relies on labeled data, unsupervised learning operates with unlabeled data. Its primary goal is to uncover hidden 
patterns, anomalies, or clusters within the data without explicit guidance. In the realm of cybersecurity, unsupervised 
models—such as K-means, Principal Component Analysis (PCA), and Variational Autoencoder—excel at identifying 
irregularities, network intrusions, and suspicious behavior. By analyzing transaction data, these models can reveal 
subtle deviations from expected norms, aiding in early detection and prevention of cyber threats. Their ability to adapt 
to evolving attack techniques and handle large-scale data makes them invaluable tools for safeguarding financial 
systems against fraud and unauthorized access.” 

Among the unsupervised models, as highlighted in Figure 2, we selected three key approaches: K-means clustering, 
Principal Component Analysis (PCA), and the Variational Autoencoder (VA-Encoder). 

 K-means Clustering: This model, based on clustering, aims to identify centroids that minimize the within-
cluster sum-of-squares criterion (inertia). It effectively groups similar data points together. 

 Principal Component Analysis (PCA): Widely used for dimensionality reduction, PCA enhances model 
performance on highly correlated data. By transforming features into a new coordinate system, it captures 
essential information while reducing redundancy. 

 Variational Autoencoder (VA-Encoder): A neural network-based technique, VA-Encoder compresses raw 
data into a compact representation. Comprising three components—encoder, decoder, and loss function—it 
provides a probabilistic approach to explain observations in latent space. Notably, it mitigates overfitting 
issues, ensuring that the latent space captures meaningful features during the generative process." 

These unsupervised methods contribute significantly to understanding data patterns and anomalies, critical for cyber 
fault detection and prevention in financial systems. 
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5. Evaluation Metrics 

1. Accuracy (ACC): This metric quantifies the overall correctness of the model’s predictions. It calculates the ratio 
of correctly predicted instances (both true positives and true negatives) to the total number of instances. 
Mathematically, it can be expressed as: 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where: 

o (TP) represents true positives (correctly predicted positive instances). 
o (TN) represents true negatives (correctly predicted negative instances). 
o (FP) represents false positives (incorrectly predicted positive instances). 
o (FN) represents false negatives (incorrectly predicted negative instances). 

2. Probability of Detection (PD): Also known as sensitivity or recall, PD measures the model’s ability to correctly 
identify positive instances (e.g., detecting network attacks). It is defined as: 

𝑃𝐷 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

A higher PD indicates better performance in capturing true positive cases. 

3. Probability of Misdetection (PMD): This metric represents the likelihood of failing to detect positive instances 
(i.e., network attacks). It is complementary to PD and can be calculated as: 

𝑃𝑀𝐷 = 1 − 𝑃𝐷 

Lower PMD values indicate better performance in minimizing missed detections. 

4. Probability of False Alarm (PFA): Also known as fall-out, PFA measures the rate at which the model incorrectly 
predicts positive instances when the actual class is negative (e.g., false alarms). It is defined as: 

𝑃𝐹𝐴 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

A lower PFA signifies fewer false alarms. 

These metrics collectively provide insights into the model’s performance, helping us assess its effectiveness in cyber 
fault detection within financial systems. 

5. Results and discussions  

To evaluate our models, we employed a 5-fold cross-validation strategy. In this approach, 80% of the data was used for 
training, while the remaining 20% served as the test set. The training data was divided into five equal subsets, and the 
model was trained on four of these subsets in each iteration. This process was repeated five times, utilizing different 
subsets of the dataset. Table 3 presents the optimal hyperparameters obtained through grid search and the ADAM 
optimizer. 

Figures 3 and 4 showcase the performance results of our machine learning (ML) models across key metrics: accuracy, 
probability of detection (PD), probability of misdetection (PMD), and probability of false alarm (PFA). 

Among the supervised models, the AlexNet model demonstrated superior performance in terms of the selected metrics 
(as depicted in Figure 3). While LightGBM performed well, it exhibited slightly lower accuracy (ACC) and PD, along with 
higher PMD and PFA compared to AlexNet. Other supervised models—such as CART and C-SVM—also delivered 
satisfactory results. However, LR and GNB models lagged behind. 
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In contrast, the unsupervised models showed significantly lower performance across the same metrics. The VA-encoder 
model outperformed other unsupervised approaches. Meanwhile, PCA yielded notably lower performance than VA-
Encoder. The K-means model had the lowest ACC and PD, coupled with the highest PMD and PFA. Comparing supervised 
and unsupervised models, AlexNet led the pack, followed by LightGBM, VA-Encoder, CART, C-SVM, PCA, GNB, LR, and 
K-means. 

 

Figure 3 Performance evaluation of the ML models in terms of ACC, PD, PMD, and PFA for Test Data 

 

 
 

Figure 4 Performance evaluation of cyber-attacks based on best ML models in terms of ACC, PD, PMD, and PFA.  

Table 4 provides additional insights into model performance using four other metrics: processing time (PR), prediction 
time (PT), training time per sample (TPS), and memory usage (M). AlexNet excelled in all these aspects among both 
supervised and unsupervised models. Conversely, GNB exhibited the poorest performance across these metrics. CART 
slightly outperformed AlexNet in terms of PRT, PT, TPS, and M. Among unsupervised models, VA-encoder stood out, 
while K-means had the lowest performance." 

These findings contribute to our understanding of model effectiveness in cyber fault detection and guide future research 
in this domain. 
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Table 4 The ML models’ performance in Terms of PRT, PT, TPS, and M for Test Data (best performancesare in bold) 

Model PRT(S) PT TPS M 

GNB 4.33 4.15 0.82 245 

CART 1.2 1.1 0.2 132 

C-SVM 2.9 1.8 0.39 236 

LR 1.6 1.2 0.51 223 

AlexNet 1.01 1 0.01 102 

LightGBM 1.4 1.3 0.09 112 

PCA 1.9 0.91 0.89 164 

K-means 1.9 1.4 0.81 180 

VA-Encoder 1.77 1.2 0.5 144 

 

Among the supervised models, the AlexNet model achieved the most favorable results, while among the unsupervised 
models, the VA-Encoder stood out in terms of accuracy (ACC), probability of detection (PD), probability of misdetection 
(PMD), probability of false alarm (PFA), processing time (PRT), prediction time (PT), training time per sample (TPS), 
and memory usage (M). 

Table 5 Performance of the ML Models in terms of PRT, PT, TPS, and M for TEST data 

Model PRT (s) PT (s) TPS (s) M (MiB) 

AlexNet 1.1 0.9 0.3 149 

VA-Encoder 2.5 1.8 0.6 210 

Random Forest 0.8 0.7 0.2 120 

SVM 1.3 1.0 0.4 180 

K-NN 0.6 0.5 0.15 90 

Figure 4 illustrates the individual attack detection outcomes for these two top-performing models. AlexNet consistently 
outperformed VA-Encoder in detecting cyber-attacks. For instance, when identifying DNS attacks, AlexNet achieved an 
impressive ACC of 99.13%, PD of 99.81%, PMD of 0.19%, and PFA of 0.93%. In contrast, VA-Encoder exhibited lower 
performance, with an ACC of 96.83%, PD of 97.11%, PMD of 2.89%, and PFA of 3.23%. 

Interestingly, VA-Encoder excelled in detecting and classifying UDP attacks. While AlexNet slightly lagged behind in 
detecting MSSQL attacks, it outperformed VA-Encoder overall. Notably, VA-Encoder struggled with SSDP, NTP, and TFP 
attacks.In summary, AlexNet consistently demonstrated superior performance across most attack types, reaffirming its 
effectiveness in cyber fault detection. 

Table 5 provides a comprehensive comparison of the AlexNet and VA-Encoder models in terms of critical performance 
metrics: processing time (PRT), prediction time (PT), training time per sample (TPS), and memory usage (M). Notably, 
AlexNet exhibited superior capabilities in detecting cyber-attacks. 

For instance, when identifying DNS attacks, AlexNet achieved significantly lower PRT, PT, TPS, and memory usage 
compared to VA-Encoder. Specifically, AlexNet detected DNS attacks with a PRT of 1.1 seconds, PT of 0.9 seconds, TPS 
of 0.3 seconds, and memory usage of 149 MiB. While AlexNet excelled in detecting NetBIOS attacks, it incurred slightly 
higher PRT, PT, TPS, and memory usage for this specific attack type. Conversely, VA-Encoder demonstrated superior 
performance in detecting SSDP attacks, albeit with higher resource utilization. 

Sample data and table taken from research work “A Comparative Analysis of Supervised and Unsupervised Models for 
Detecting Attacks on the Intrusion Detection Systems” 



International Journal of Science and Research Archive, 2024, 11(02), 558–568 

566 

To contextualize our findings, we compared our proposed techniques with existing studies in the literature (as 
summarized in Table 6). These prior studies utilized different datasets, including NSL KDD and KDDCup99. Notably, 
most of these studies primarily focused on supervised models, leaving a gap in understanding the performance of 
unsupervised models for intrusion detection in smart grids. Our study bridges this gap by evaluating the effectiveness 
of both supervised and unsupervised models. Overall, our results highlight that AlexNet and VA-Encoder outperform 
other models in terms of accuracy, probability of detection, probability of misdetection, probability of false alarm, 
processing time, prediction time, training time per sample, and memory usage. 

6. Conclusions 

Intrusion Detection Systems (IDS) play a critical role in safeguarding networks by monitoring and detecting anomalies. 
While existing research has predominantly focused on supervised machine learning models for attack detection, our 
study provides a comprehensive comparison between supervised and unsupervised approaches. We evaluated these 
models across various metrics, including accuracy, probability of detection, probability of misdetection, probability of 
false alarm, processing time, prediction time, training time per sample, and memory usage. 

Our model selection spanned diverse categories: Bayesian, Tree-based, Instance-based, Regularization-based, Neural 
Network, and Ensemble models. From these, we chose specific models for both supervised and unsupervised learning. 
Notably, the Alex Neural Network emerged as a top performer among supervised models, while the Variational 
Autoencoder (VA-Encoder) excelled among unsupervised models. VA-Encoder’s ability to prevent overfitting and 
generate meaningful features in the latent space contributed to its superior performance. 

Furthermore, our findings demonstrate that cyber-attacks can be more effectively detected using Variational-Encoder 
compared to other unsupervised methods. As future work, we recommend exploring the performance of deep learning 
models—both supervised and unsupervised—for detecting attacks in IDS. These insights contribute to enhancing 
network security and fortifying financial systems against evolving threats. 
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