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Abstract 

Power electronics pertains to the conception, regulation, and utilization of electronic power circuits to proficiently 
administer and transform electrical energy. Power electronics play a crucial role in maintaining the reliability, efficiency, 
and security of complex production systems. Also, increasingly important in various applications such as renewable 
energy systems, electric vehicles, and industrial automation. However, modern power electronics systems are 
vulnerable to both cyber and physical anomalies due to the integration of information and communication technologies. 
So far, different methods have been used to detect abnormalities. This survey provides an overview of the state-of-the-
art in anomaly detection in power electronics using machine learning and deep learning methods. It highlights the 
potential of these techniques in addressing the growing complexity and vulnerability of power electronics systems. 
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1. Introduction

Power electronics is a field that deals with the design, development, and implementation of electronic systems that 
control and convert electrical power [1, 2]. Power electronics is used in various applications, including smart grids, 
electric transportation, robotics, and power generation systems [3]. The production of renewable energy has increased 
due to the progress of power electronics. Converters play a major role in increasing renewable energy sources and 
storage units. As these converters are used in Photovoltaic (PV) power plants, wind farms, and electric vehicles, to 
increase operational reliability, they need to improve [4]. Also, the use of power electronics technology in the 
infrastructure of Internet-based communication networks provides the possibility of coordinated control and increases 
energy efficiency and flexibility in smart networks. Subsequently, connectivity and integration of power electronics and 
Internet-based communication networks will lead to potential cyber threats [5, 6]. Therefore, to increase security and 
reliability, anomaly detection strategies are needed.  

Anomaly refers to a deviation from normal conditions or a discrepancy that is not considered satisfactory. It can be 
anything that does not align with the expected or standard behavior, indicating a potential issue or irregularity [7]. 
Anomalies can indicate critical incidents, such as technical glitches, or changes in consumer behavior [8]. Abnormalities 
in consumer conduct can manifest as unforeseen patterns of electricity usage. For example, if a residential area has a 
stable and predictable pattern of energy consumption during certain hours, a sudden deviation from this pattern can 
indicate an abnormality[9]. 

Anomaly detection in power electronics involves the task of identifying and addressing abnormal behavior or deviations 
from normal operation. Anomaly can occur in various components such as converters, inverters, and power supplies 
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[10]. Anomaly detection is essential to maintain complex systems, such as power electronic systems, by ensuring full 
coverage and minimal response time across all platforms, operating systems, and data centers [11]. This essentiality is 
because anomalies can result in system downtime, decreased efficiency, and higher maintenance expenses [12]. 
Furthermore, there is a growing need for real-time anomaly detection and classification systems in power electronic 
systems due to the integration of various technologies like renewable energy sources, smart grids, and cyber-physical 
systems [10]. This integration adds complexity to electronic power systems, leading to challenges in real-time anomaly 
detection and necessitating the advancement of sophisticated anomaly detection and classification systems [13]. 

Machine learning algorithms are increasingly used to automate anomaly detection, and make it more efficient and 
accurate[14]. Some of these applications including: 

 Cybersecurity: Employing machine learning to identify anomalous activity or intrusions into networks, as well 
as other cyber-attacks [15].  

 Fraud detection: The process of identifying abnormal trends in financial transactions and fraudulent activity 
by applying machine learning algorithms [16].  

 Predicting equipment failures: This technique forecasts failures and faults in electrical and electronic devices 
and industrial machinery [17].  

 Health monitoring: Tracking system and equipment performance and health using machine learning 
algorithms to spot anomalies and possible problems [18].  

Machine learning and deep learning algorithms have become increasingly popular in addressing anomaly detection in 
power electronics. These algorithms can analyze historical data, recognize patterns, and identify anomalies that may 
not be detectable using traditional methods [2, 19]. It is necessary to create a taxonomy for various anomaly types to 
choose the appropriate techniques for anomaly detection [20].  

This survey presents classified methods in anomaly detection and investigates diagnosis in power electronics with 
machine learning and deep learning. It is important to notice that while anomaly detection and anomaly diagnosis are 
related concepts in power electronics, they are distinct from each other. Anomaly detection involves identifying patterns 
within data that deviate from predicted behaviors [21]. However, the act of diagnosing anomalies involves determining 
the root cause of an anomaly or deviation from normal behavior [22]. 

The rest of this paper is organized as follows. Section 2 is a taxonomy of anomalies in power electronics. Section 3 details 
the approaches that detect anomalies. Section 4 investigates the anomaly diagnosis. Finally, Section 5 concludes the 
paper. 

2. Anomaly Taxonomy  

The term "anomaly" or "outlier" can be divided into three categories according to the problem, which are described in 
the following: 

 Point anomalies: Occurs when data samples exhibit substantial deviation from the norm or expected behavior 
within a dataset [23]. For example, in the field of power electronics, a sudden drop or increase in the level of 
voltage in an electrical system is considered a point anomaly [12]. 

 Contextual anomalies: These kinds of anomalies might be classified as normal or anomalous depending on the 
surroundings and situations around them [24]. Temperature readings are one type of data point that could be 
normal in one context but anomalous in another. For example, an 80°F temperature in the summer could be 
regarded as normal, but in the winter it might be anomalous. In the same vein, 40°F can be regarded as normal 
in the winter but anomalous in the summer. Therefore, whether temperature readings are regarded 
as normal or anomalous depends on the season they are considered (summer vs. winter) [25]. 

 Collective anomalies: Collective anomalies manifest when a specific group of data points deviates significantly 
from the overall dataset. While individual data points may not be considered abnormal on their own, their 
collective occurrence forms an anomalous pattern [26, 27]. For instance, abnormal power consumption 
patterns in a group of devices or equipment can be considered collective anomalies [28]. 

Moreover, various abnormalities that can occur in power electronic systems include the following:  

 Cyber-attacks: Malicious actions are with the objective of disrupting, causing damage to, or gaining 
unauthorized entry into power electronic systems. These actions include injecting false data, manipulating 
control signals, or compromising communication networks [29]. 
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 Physical faults: Defects or failures that impact the components or parameters of power electronic systems. 
Examples of such faults include over voltages or overheating [30]. 

 Environmental disturbances: External factors that exert an influence on the performance or operation of 
power electronic systems. These factors may include noise, temperature, humidity, solar power, wind speed 
[31]. 

3. Anomaly detection techniques in power electronics 

Approaches for detecting and categorizing data samples that differ from a data set's normal patterns are known as 
anomaly detection techniques [7]. Anomaly detection techniques in power electronics can be categorized as supervised, 
unsupervised, or statistical techniques as shown in Figure 1. 

 

Figure 1 Anomaly detection techniques in power electronics 

3.1. Supervised anomaly detection 

In the techniques that fall into this category, the training dataset has two types of labels "normal" and "abnormal" [10]. 
For anomaly detection, a model is built to predict normal and abnormal data, then this model is used to determine the 
class of unseen data [25]. The lower number of abnormal data compared to normal data, as well as the accurate labeling 
especially for abnormal classes, are challenges in these techniques [21]. 
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3.1.1. Traditional machine learning methods  

The machine learning is a field that grants computers the ability to acquire knowledge through data and make 
predictions or decisions [32]. In various studies, machine learning algorithms have been used to detect anomalies in 
power electronics. 

The [33] study, introduces a new algorithm for the detection of anomaly presence, classification of the anomaly type, 
and identification of the origin of the anomaly. By employing an anomaly detection index, anomalies that surpass the 
χ2-test are effectively detected. Subsequently, the machine learning algorithms, namely Random Forest (RF), Extreme 
Gradient Boosting (XGB) algorithms, Logistic Regression (LR), and K-Nearest Neighbors (KNN), are employed for the 
purpose of classifying anomalies and determining their origin.  

Waveforms have been used to train anomaly detection models in power electronics [34]. Waveforms are a form of 
information that symbolize the alteration of a quantity as time progresses, for instance, voltage, current, or frequency 
[35]. The [36] study aim is anomaly detection for real electronic signal data from particle accelerator power systems 
using machine learning algorithms. This study uses real-time series datasets collected from the High Voltage Converter 
Modulators (HVCM) of the Spallation Neutron Source (SNS) facility. These datasets contain waveform signals collected 
from the operation of more than 15 HVCM systems during 2020-2022. 

3.1.2. Deep learning methods 

Recent studies use deep learning methods especially autoencoder models for anomaly detection. The autoencoder is a 
type of neural network that is appropriate for detecting anomalies as it is trained to reestablish ordinary patterns and 
displays substantial reconstruction error when confronted with anomalous data [19, 37]. The application of 
autoencoder models in power electronics anomaly detection is founded upon their capacity to comprehend intricate 
patterns within the data and discern deviations from the standard behavior, thus serving to enhance the durability and 
dependability of power electronics systems [38, 39]. Also, the Recurrent AutoEncoders (RAE)-based neural network 
architectures and recurrent neural networks such as Long-Short-Term-Memory (LSTM) have been proposed for early 
detection of anomalies in power signals and their application has been proven in the field [37].  

As previously achieved [40], a hybrid deep learning approach has been utilized for the detection of anomalies in 
Electrical Power Steering (EPS) sensor data. In the present study, the model is initially trained on EPS data employing 
an automatic encoder to extract and compress features. Subsequently, these extracted features are inputted into the 
LSTM network in order to capture the pertinent dependencies among them. In the [41] study, an LSTM-based anomaly 
detection model is proposed, which is trained using the Point of Common Coupling (PCC) data of the inverters, 
frequency, voltage and Rate Of Change Of Frequency (ROCOF). As such, it enables real-time anomaly detection and 
classification for low-inertia Power Electronics Dominated Grid (PEDG). The study of [42] investigated the use of RAE-
based neural network for automatic detection of abnormalities in order to reduce HVCM system failures. Additionally, 
the study involved training bi-directional Gated Recurrent Unit (GRU), bi-directional LSTM, and convolutional LSTM 
(ConvLSTM) using real experimental signals, and comparing their performance with other classical anomaly detection 
methods. Also, the [43] study, has introduced anomaly detectors for electricity theft cyberattack detection in Advanced 
Metering Infrastructures (AMIs). They use deep (stacked) autoencoders with an LSTM-based Sequence-to-Sequence 
(seq2seq) structure to design detectors. 

The primary limitation associated with the utilization of autoencoder models resides in their susceptibility to 
overfitting, thereby resulting in suboptimal generalization capabilities when applied to unfamiliar datasets [37]. To 
address this problem, it is crucial to utilize an adequate amount of training data and implement methods like 
regularization, dropout, or early termination in the training phase. Furthermore, it is vital to assess the model's 
performance on a distinct test dataset to verify its ability to effectively adapt to new data [44]. 

In training deep learning models, there should be a balance between training and generalization [45]. If this balance is 
not achieved and the training is not appropriate, the model will not perform well when tested on new data that have 
different distributions than the training data [46]. In the problem of anomaly detection, when the abnormal data have a 
different distribution from the normal data, the model cannot correctly detect the new abnormal data. Therefore, the 
value of the loss function increases due to model misclassification [11]. Another disadvantage of the deep learning 
models is that it require a lot of labeled training data to improve accuracy in classification models [47]. 
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3.2. Unsupervised anomaly detection 

This approach does not require labeled data to detect anomalies [48]. In this approach, usually, normal samples are 
much more than abnormal samples in the test data set. But, if there are more abnormal samples, the predictive model 
will have a high false alarm rate [21].  

The unsupervised anomaly detection approach relies on clustering methods to identify anomalies [5]. Clustering 
methods group data based on similarities or differences and allow the detection of abnormal or outlier patterns [49]. 
Some of the clustering algorithms that have been employed to identify anomalies in power electronics include:  

 K-means: This algorithm partitions the data into k clusters based on the distance to the centroid of each cluster. 
The K-means assumption is that the normal data samples are positioned near the center of the cluster, while 
the anomalies are located outside the center [25]. 

 DBSCAN: This algorithm groups the data based on the density of its neighborhood. This algorithm does not 
force every data instance to belong to a cluster [50]. 

 OPTICS: This algorithm arranges the data points in order of their reach distance, which represents the 
minimum distance required to connect two points in a cluster. Points that belong to the same cluster are in 
close proximity to each other, while points that are farther apart have greater reach distances [51]. 

The [52] has utilized these three methodologies to address the detection of abnormality in electricity consumption for 
public street lighting. These algorithms facilitate the detection of anomalies by identifying data points that do not 
pertain to any cluster or exhibit low density. As per the reported outcomes, K-means exhibits the shortest execution 
time, although the DBSCAN algorithm surpasses both K-means and OPTICS in terms of accuracy in identifying 
anomalies. 

In [53], the Meanshift clustering method utilizes grid-tied inverters and solar-irradiance to perform pre-classification 
and anomaly detection on time series data pertaining to electrical parameters. The authors in [5] focus on both real-
time anomaly detection and classify the type of anomaly. In this research, anomaly detection is done using a new 
algorithm called Informative Leveraging for Anomaly Detection (ILAD). Also, to classify the types of anomalies, they 
have employed a novel clustering method called Multivariate Functional Principal Component Analysis (MFPCA). 

3.3. Statistical Methods 

Statistical techniques employed in power electronics encompass the utilization of mathematical and probabilistic tools 
to scrutinize and formulate models, and enhance the efficacy, dependability, and efficiency of power electronic systems 
[54]. The employment of statistical methods can prove advantageous in addressing the challenges posed by the 
presence of uncertainties, variances, and disturbances that have an impact on power electronic systems; these 
challenges may take the form of noise, faults, or cyber-attacks [55].  

The matrix profile algorithm and anomaly transformer are two statistical methods used for anomaly detection. Power 
electronic signals and other time series data can be detected using these methods [12]. The Mahalanobis Distance (MD) 
technique is employed for the detection of anomalous behavior in electronic commodities through the comparison of 
MD values against baseline values [56]. Moreover, the Local Outlier Factor (LOF) algorithm is another method that is 
based on statistics and utilized for anomaly detection. The anomaly score produced by this method indicates data points 
that are outside the average range in the dataset [57]. 

 

 

Table 1 provides a summary of the detection methods that were investigated for anomaly detection. 

Table 1 Comparing different methods 

Ref. Year Category Method 

[52] 024 Unsupervised K-means, OPTICS, DBSCAN 

[41] 2023 Supervised LSTM 

[5] 2023 Unsupervised Multivariate Functional Principal Component Analysis (MFPCA) 
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[57] 2022 Statistical Local Outlier Factor 

[33] 2022 Supervised RF, XGB, LR, KNN 

[40] 2022 Supervised Autoencoder + LSTM 

[12] 2022 Statistical matrix profile algorithm + anomaly transformer 

[42] 2022 Supervised RAE-based neural network + GRU + Bi-LSTM + convolutional LSTM (ConvLSTM) 

[43] 2022 Supervised deep (stacked) auto-encoders with a LSTM-based Sequence-to-Sequence (seq2seq) 
structure 

[53] 2020 Unsupervised Meanshift clustering 

4. Anomaly Diagnosis 

Anomaly diagnosis in power electronics entails the procedure of discerning and categorizing abnormal behaviors or 
faults that affect the components or parameters of power electronics systems, such as converters, inverters, rectifiers, 
and controllers [58]. Anomaly diagnosis facilitates the comprehension of the fundamental reason behind the 
abnormality and the implementation of suitable rectifying measures to tackle the matter [59].  

By effectively diagnosing anomalies, it is possible to prevent equipment failures, optimize performance, and enhance 
the overall operation of power electronic systems [60]. The applications of anomaly diagnosis in power electronics 
include condition monitoring of power electronic devices, predictive maintenance of electrical systems, fault isolation, 
and detection in power converters [61].  

It is worth noting that in [5], anomaly detection is defined as a problem that aims to differentiate between cyber-attacks 
and physical faults. For instance, the device-level Power Electronics Converters (PEC) have two major anomaly types 
that are cyber-attacks and physical faults. Although these two types of anomalies are prevalent, distinguishing between 
cyber-attacks and physical faults is difficult [29]. To tackle this challenge, researchers have put forth various techniques 
aimed at distinguishing cyber-attacks from physical faults in power electronic systems.  

The [30] study, uses a non-invasive anomaly diagnosis mechanism to distinguish between cyber-attacks and faults in 
power electronic systems such as Inverter-Based Resources (IBRs) or microgrids. This method only requires locally 
measured voltage and frequency as input and can distinguish these anomalies within 5 ms. The [62] study, employs a 
bilateral-information-based cyber-attack identification method for Cyber-Physical Power Systems (CPPSs). They 
utilized an Extreme Learning Machine (ELM) due to its rapid learning speed and strong generalization performance. 

5. Conclusion 

The use of solid state electronics to control and convert electric power is a subject that has been addressed in the field 
of power electronics. The important role of power electronics in various industries is undeniable. In these industries, 
anomalies may occur due to various factors such as voltage fluctuations, electromagnetic interference, defects in 
electronic components or improper operation of control systems. Therefore, there are different methods for detecting 
abnormalities. This survey provided an analysis of the current state of anomaly detection in power electronics using 
machine learning and deep learning methods. 
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