
* Corresponding author: M. K. Panigrahi 

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0. 

Wetability and dielectric property of DL-PLA/CLOISITE 20A/PANI nanocomposite 

M. K. Panigrahi 1, *, R.I. Ganguly 2 and R.R. Dash 3 

1 Department Materials Science, Maharaja Sriram Chandra Bhanja Deo University, Keonjhar Campus, Odisha, India. 
2 Department of Metallurgical Engineering, National Institute of Technology, Raurkela, Odisha, India. 
3 CSIR-National Metallurgical Laboratory (CSIR-NML), Jamshedpur, Jharkhand, India. 

International Journal of Science and Research Archive, 2024, 11(02), 391–406 

Publication history: Received on 25 January 2024; revised on 08 March 2024; accepted on 11 March 2024 

Article DOI: https://doi.org/10.30574/ijsra.2024.11.2.0398 

Abstract 

DL-PLA/CLOISITE 20A nanocomposite is fabricated by solution casting method. , DL-PLA/CLOISITE 20A/PANI 
Nanocomposite is also synthesized by chemical-oxidation method. Characterization of that nanocomposite is made 
using XRD, FTIR, UV Visible. TGA studies a wettability studies and dielectric analysis of prepared materials. Results 
reveal enhancement of thermal stability and crystallinity of the nanocomposite. Further, nanocomposite shows that it 
is hydrophilic in nature. Frequency dependent ac-conductivity and dielectric loss are estimated for the nanocomposite. 
Dielectric loss is observed to possess low value (0.2). Fabricated DL-PLA/Cloisite 20A may serve as insulating layers to 
suppress dielectric loss effectively. 

Keywords: Polylactide (DL-PLA); Cloisite 20A; Nanocomposite; Conducting polymers; Polyaniline (PANI); In-situ; 
Wettability; Dielectric property 

1. Introduction

Microelectronic packaging materials are required to fulfill different other requirements such as low dielectric loss, 
moderate relative permittivity, moisture absorption resistance, low co-efficient of thermal expansion (CTE), high 
dimensional stability and mechanical stiffness [1]. For this purpose, ceramic-polymer composites are considered to be 
suitable for meeting functional packages which combine electrical properties of ceramic, mechanical flexibility, chemical 
stability, and processing possibilities of polymers. This material shows prospects for use in piezoelectric & pyrroelectric 
applications, flexible sensors, transducers, thick film dielectrics, embedded capacitors, tunable antennas and other 
multilayer radio frequency (RF) devices [2–4]. Presently, research is focused on polymer-ceramic composites [5–8]. 
Required polymer may be one of the followings i.e. PVDF [9], (PVDF–TrFE) [10], silicon-rubber [11], polyimide [12], 
polyvinyl chloride (PVC) [13], cyanoethylated cellulose polymer (CR-S) [14], polystyrene [15], and polyurethane [16]. 
However, only for a few composites, thermoplastic polymers are used [17, 18]. Due to their excellent chemical stability 
and good mechanical processing possibilities, they are net-shaped at elevated temperatures. Using injection molding, 
lamination or extrusion process, sheets or a 3D structure can be formed from these materials. Usually, thermoplastic 
polymers are suitable candidates for making ceramic-polymer composites. 

Electronic waste has been causing environmental pollution during last few decades. If such materials are made from 
biodegradable polymer, then problems for environmental pollution due to electronic waste will be addressed. Such 
biodegradable polymers will be derived from renewable resources such as corn starch and sugar [19]. For this, 
polylactide (PLA) is considered to have suitability for applications in inverters, transistors and memories [20-23]. PLA 
is a type of thermoplastic polyester synthesized by ring-opening polymerization of lactide. All reasons stated above have 
derived numerous attentions from both industries and academia. Materials, thus developed, will have biodegradability, 
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biocompatibility, and improved mechanical performance with low cost of production [23-25]. However, poor dielectric 
performance of PLA restricts its extensive applications [26]. 

PLA has additional advantage of having good thermal stability and mechanical stability. One of the limiting factors of its 
use is lower permeability for gases, vapors and organic molecules having lower molecular weight [27]. Passage of 
oxygen and water vapor through polymer films drastically lowers service performance of a packaging material.  This 
will cause difficulty to maintain food quality throughout its shelf life [28, 29]. Therefore, mass transfer through these 
polymers is an important consideration for development. Research is being carried out in this direction. Incorporation 
of two-dimensional (2D) platelets or disk-shaped nanoparticles in the polymer matrix has proven to be an advantageous 
strategy. The strategy has paid dividend by decreasing gas/liquid permeation in polymers. 2D platelets or disk-shaped 
nanoparticles act as physical barriers to diffusion path of the permeant molecule and therefore, creating a tortuosity 
effect. Food shelf-life increases by enhancing material performance [30-33]. Nanoclays such as mica, saponite, 
montmorillonite and kaolinite are used as 2D nanoparticles which improves barrier properties in many 
polymers [34]. There are many publications available on PLA/Clay nanocomposites. This composite is mainly focused 
on improving thermal [35-37], mechanical [38-40] and optical properties [41, 42]. Such material is also 
biodegradable [43, 44]. Comparatively fewer studies have been devoted to mass transfer in PLA, and PLA/clay 
nanocomposites. 

Use of nanofillers like clays and silicates is advocated since they are available in abundance with low cost. Due to a few 
other reasons such as high aspect ratio, rich intercalation chemistry, high strength & stiffness, thermal stability, etc., 
they provide synergetic effects which help significantly to improve properties for many polymers [45-48]. However, 
properties largely depend on dispersion of clay layers in the polymer matrix. Intercalation, exfoliation, mixed 
intercalation & exfoliation, aggregation, etc. greatly affect gas barrier properties. Therefore, a high level of exfoliation 
with desired orientation of platelets remains a challenging task [49-52]. Healthy dispersion is feasible by increasing 
affinity between clay layers and polymer through organic modification of interlayer galleries. Affinity is improved by 
addition of organic ammonium, sulfonium or phosphonium cations. A Detailed list of common organic modifiers is 
suggested by Nordqvist and Hedenqvist [34]. Common dispersion of organo-modified layered silicates in a PLA matrix 
is achieved by adopting solution intercalation, melt processing and in situ polymerization methods [53]. 

Improvement in dielectric properties of PLA is achieved by preparing percolative composites with conductive 
fillers [54]. High dielectric constant near the percolation threshold is due to conductive fillers which act as micro-
capacitors in the insulating polymer matrix [55-57]. However, composites suffer from high dielectric loss and low 
breakdown strength due to tunneling effect and direct Ohmic contact between pristine conductive fillers [58]. 

Easiest technique for preparation of nanocomposites in a laboratory scale is Solution intercalation method. In this 
method, clay platelets are exfoliated in a solvent in soluble polymer. Clay suspension in polymer solution is made where 
polymer chains adsorb on the surface of the platelets. Thus, clay-polymer complex is formed. Remaining evaporated 
leaves behind clay-polymer complex. However, the method is environmentally unfriendly due to escaping of organic 
solvents in the atmosphere [52]. Maharana et al. [59] have prepared PLA/clay nanocomposites using a solution 
intercalation method. Thus, the nanocomposite has shown better mechanical and barrier properties.  

Effect of structure of different organic modifiers of clay nanoparticles such as Cloisite-15A, -25A and -30B modified with 
dimethyl dihydrogenated tallow quaternary ammonium, dimethyl hydrogenated tallow-2-ethylhexyl ammonium and 
methyl tallow-bis-2-hydroxyethyl quaternary ammonium have been studied by Pochan and Krikorian [60]. They have 
determined extent of exfoliation of nanoclay in a PLA matrix by solvent intercalation method. 

 Conducting polymers are new generation materials. They exhibit good optical and electrical properties. Therefore, they 
offer promising advantages for different applications. Characteristic features of conducting polymers are due their 
reversibility and good environmental stability. Presently they are available in market as film which enhance their 
potentiality for use in many practical applications [61-67].  

Polyaniline is a promising polymer because of its unique electrical properties. They polymerise easily and cost of their 
monomers is low. Therefore, they have wide applications in microelectronic devices, light weight batteries, sensors, 
super capacitors, microwave absorption and corrosion inhibitor [68-75].  

Paper has described preparation of DL-PLA/Cloisite-20A/PANI composite by in-situ technique. Here DL-PLA has been 
mixed with Cloisite-20A (0.3wt %) solvent. Suitable solvent is used to prepare DL-PLA/Cloisite-20A polymer film. 
Microstructure, dielectric property, and thermal stability of the prepared composite are evaluated. 
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2. Experimental details 

2.1. Chemicals and Materials 

DL−PLA polymer is procured from Cargill Dow Bair; US−NE. Cloisite 20A and chloroform (CHCl3) are fetched from Merck 
India.  

2.2. DL-PLA/Cloisite 20A Nanocomposites Preparation by solution casting process [64-66] 

DL-PLA/Cloisite 20A nanocomposite is prepared by solution casting process [76]. In this process, DL-PLA polymer is 
dissolved with required amount of solvent (i.e., chloroform). To the polymer solution, 4 wt% (with respect to polymer 
weight) of Cloisite 20A nanoclay is added. DL-PLA polymer solution is stirred for 30 min. This will ensure uniform 
dispersion of Cloisite 20A nanoclays in DL-PLA polymer solution. Dispersed product is transferred to a petridish where 
solvent has evaporated out rapidly. There After, DL-PLA/Cloisite 20A nanocomposite film is collected from the 
petridish. Flow chart of DL-PLA/Cloisite 20A Nanocomposite Preparation is shown in Figure 1. The nanocomposite is 
cut into small pieces for different characterizations.  

 

Figure 1 Flow chart of DL-PLA/Cloisite 20A Nanocomposites Preparation 

2.3. DL-PLA/Cloisite 20A/PANI Nanocomposites Preparation by in-situ technique 

DL-PLA/Cloisite 20A/PANI Nanocomposites is prepared by chemical-oxidation process i.e., in-situ method. Liquid 
aniline is used as conducting polymeric material, whereas DL-PLA/Cloisite 20A film is taken as a base material. The 
nanocomposite is prepared at room temperature [64-66]. Three steps involved in the preparation of 
nanocomposites by in-situ technique are described below; 

2.3.1. Step I Preparation of liquid aniline and DL-PLA/Cloisite 20A films solution 

3 mL liquid aniline and DL-PLA/Cloisite 20A films (1.5 cm × 1.5 cm) are put into a 500 mL conical flask containing 105 
mL of 1 (M) HCl solution. The solution is stirred (at 600 rpm) for 12 h in a magnetic stirrer. Reaction occurs between 
soluble aniline and DL-PLA/Cloisite 20A films. 

2.3.2. Step II Preparation of Dopant solution 

 Dopant solution is prepared by taking distilled water and concentrated HCl in appropriate proportion. 7.47 g of 
ammonium persulphate (oxidant) is added slowly to 60 mL of 1(M) HCl solution. The solution is shacked for shaking (5 
minutes).  

2.3.3. Step II Preparation of DL-PLA/Cloisite 20A film/PANI Nanocomposites 

In this step, prepared oxidant solution is slowly added (i.e., drop wise) to liquid aniline and DL-PLA/Cloisite 20A films 
mixture solution. Solution is stirred continuously for 10 h. during this period, polymerization reaction proceeds. Color 
change is noticed from light green to dark green. The nanocomposite is washed with distilled water for several times. 
After washing, it is followed by drying in air (6 h). Flow-chart for Nanocomposite preparation is shown in Figure 2. 
Sample from DL-PLA/Cloisite 20A film/PANI Nanocomposite is ready for different tests. 
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Figure 2 Flow chart of HCl doped DL-PLA/Cloisite 20A/PANI Film preparation 

2.4. Characterization techniques  

X-ray diffraction (XRD) is made with Phillips PW-1710 advanced wide angle X-ray diffractometer and Phillips PW-1729 
X-ray generator. Cu Kα radiation (λ = 0.154 nm) with X-ray generator is maintained at 40 kV and 20 mA.  

Fourier transformation infra-red (FTIR) test is done with Thermo Nicolet Nexus 870 spectrophotometer. FTIR spectrum 
is recorded between 400-4000 cm−1. Settings of spectrometer are maintained with 50 scans at 4 cm−1 resolution in 
absorbance mode. Background spectrum is run before taking the FTIR test of the sample. 

TGA test of the nanocomposite is done with Perkin Elmer Pyris Diamond analyser. TGA test is performed in Nitrogen 
environment. In the test, heating rate is maintained to be 10o/min. 

Contact angle is measured on layered substrate which is positioned in sample holder. Distilled water is dropped slowly 
on the substrate. Silhouette of drop is viewed in a digital camera, attached to a personal computer (PC). Contact angle 
is estimated through Image analyze software. Attitude is determined 1 second after the drop and is positioned on the 
substrate surface [67].  

AC conductivity is measured by LCR meter. Frequency dependent AC conductivity (σac) is estimated using the 
expression [77]; 
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The following expression is used to estimate dielectric constant (k) [77]; 
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Here;  
 C = Capacitance of the pellet  
d = Thickness of the pellet (2.5 mm)  
A = Cross sectional area of the flat surface of the pellet (100 mm2)  
ɛₒ = Constant of permittivity of free space. 
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3. Results and discussion 

 

Figure 3 Contact angle/Wettability analyses of DL-PLA (A) and DL-PLA-Cloisite 20A/PANI nanocomposite (B) 

Water contact angles are measured to confirm the surface hydrophilicity of the sample. The films hydrophilicity 
indicates that the sensing film absorbed water drops on the polymeric film surface. The contact angle of water drops on 
the sensing film surface measured by the sessile drop method [78]. It is well known that the contact angle of a surface 
is less than 90°, indicates the surface is hydrophilic. Figure 3 shows Contact angle/Wettability analyses image of DL-
PLA (A) and DL-PLA-Cloisite 20A/PANI nanocomposite (B). This study indicates that prepared material is either 
hydrophilic or hydrophobic nature. 

Table 1 Contact angle of DL-PLA and DL-PLA/Cloisite 20/PANI composite 

S.No. Sample ID Contact angle 

1 DL-PLA 82.6° 

2 DL-PLA-Cloisite 20A/PANI nanocomposite 61.2 

 

 

Figure 4 FTIR plot of Cloisite 20A (A) and DL-PLA/ Cloisite 20A nanocomposite (B) 
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Analysis is recoded and is mentioned in Table 1. As we can see Table 1, water contact angle for DL-PLA is 82.6° and DL-
PLA/Cloisite 20/PANI composite is 61.2°. It is observed that contact angle is lower for DL-PLA/ Cloisite 20/PANI 
composite. This is attributed to the incorporation of PANI is useful to increase the hydrophillicity and adsorption of 
water molecules on DL-PLA/ Cloisite 20/PANI composite surface. Increased hydrophilicity has improved water vapor 
absorption and settling at surface of composite film. An increase in the physisorption process at the sensing film surface 
enhances sensors sensitivity [67]. 

Figure 4 displays FTIR spectra of Cloisite 20A (A) and DL-PLA/ Cloisite 20A nanocomposite (B). FTIR spectra show 
occurrence of different absorption bands which are present in the material. Absorption band ensue at 1117 cm -1 wave 
number is attributed to Si-O band and signifies the occurrence of silicate groups. The absorption bands of DL-PLA at 
2995, 1759, 1616 and 1216 cm-1 have been attributed to C-H stretching, C=O stretching, C-O stretching of ester and C-
O-C stretching vibration, respectively, whereas the bands at 1453, 1361 and 1363 cm-1 represent the stretching 
vibration of C-H deformation of DL-PLA polymer [66, 76]. This indicates that the characteristic absorption features of 
DL-PLA polymer are retained in the prepared DL-PLA film. The main FTIR bands of PANI-ES are found at 1554, 1475 
and 1108 cm-1 corresponding to quinoid, benzenoid and C=N stretching, respectively [66, 67, 76]. From our observation, 
the presence of quinoid and benzenoid ring vibrations are exhibited at 1475 and 1554 cm-1 respectively, indicating the 
presence of oxidation state of PANI-ES. The characteristic band obtained in the ATR-FTIR spectrum of DL-PLA/PANI-
ES composite film indicates the formation of conducting DL-PLA/PANI-ES composite films. It is observed that N-H bands 
of HCl doped DL-PLA/PANI-ES appeared at 3289. The entire bands indicate that both PANI-ES and DL-PLA are retained 
in the composites. 

 

Figure 5 XRD plot of DL-PLA (A) and DL-PLA/ Cloisite 20A nanocomposite (B) 

Diffraction pattern is shown in Figure 5. Figure 5A shows absence any sharp peaks indicating amorphous nature of the 
material. However, there is a broaden peak shown near 15⁰ (Figure 5A). Diffraction pattern of composite is shown in 
Figure 5B. Here, the pattern has marked difference observed in the diffraction pattern of Figure 5B if it is compared with 
diffraction pattern observed in Figure 5A. There is a narrow sharp peak observed around 11-12⁰ followed by another 
peak near to 15⁰. Additionally, occurrences of small peaks are seen in the other Bragg’s angels. Therefore, composite 
materials have shown presence of crystalline phases in the composite materials. These results, correlate with the 
findings of enhanced degree of crystallinity of DL-PLA/Cloisite 20A/PANI Composite which is attributed to the 
transcrystaline of the polymer due to addition of PANI in DL-PLA polymer. Thus, this will improve thermal resistance 
of composite which is proven by its higher crystallite with denser lamella [78-80]. 
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Figure 6 UV Visible plot of DL-PLA/ Cloisite 20A nanocomposite 

It is found from literature that PANI-ES shows π-π* transition (of benzoid ring), polaron to π*, benzoid to quinoid ring, 
and polaron transition [64-66]. However, no transition is observed for DL-PLA polymer flim [64-66]. Different 
transitions are observed in DL-PLA/Cloisite 20A/PANI Composite (Vide-Figure 6). In the composite, two types of bands 
such as π to localized polaron band   and π-π*(of benzoid ring) are found. Both transitions suggest presence of anilinic 
unit and oxidation unit in emeradlline salt form of composite flim [64-66]. Thus, there is indication of conjugation length 
affecting band gap energy. Hence, electrons are delocalized in the excitation band.  

 

Figure 7 TGA plot of DL-PLA (A) and DL-PLA/ Cloisite 20A/PANI nanocomposite (B) 

Figure 7 shows TGA analyses of DL-PLA (A) and DL-PLA/Cloisite 20A/PANI Composite (B). For plotting the graph, 
weight loss has been established at different temperatures ranging between 30-800 ⁰C. Data plot is depicted in Figure 
7 as weight loss vs temperature. Between 75-100 ⁰C, there is a slight loss in weight. Thereafter, weights remain same 
till 350 ⁰C. Beyond 350 ⁰C, weights loss further for both the materials have dropped sharply.  There is a change in weight 
further I both the materials (mentioned Figure 7) beyond 350 ⁰C.  First stage weight loss is attributed to loss of water 
molecules occurring in the surface of the materials. Second stage weight loss indicates decomposition of the materials 
and its composite [81].    
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Figure 8 [- (-Z img)] vs frequency plot of DL-PLA/ Cloisite 20A nanocomposite 

PANI based composite has a mixed electronic–ionic exchange condition at the film /electrolyte or dopant interface [82, 
83]. Electronic charge transfers through the electrodes at the DL-PLA/Cloisite 20A film surface. Ions of electrolyte move 
also ingress/outgress freely at both interfaces. Charge conduction in DL-PLA/Cloisite 20A/PANI composite film surface 
is electronic–ionic in nature. This takes by polaron/bi-polaron transition of PANI structures involving anion hoping 
along and across the chains [84, 85].  

Figure 8 shows ES results of PANI in DL-PLA/ Cloisite 20A/ PANI composite in Nyquist format where the imaginary 
component of impedance (−Z”) is plotted against the real component (Z’) as a function of frequency. In Figure 8, 
semicircle represents the response of an equivalent electrical circuit (i.e., parallel combination of R–C (resistor–
capacitor). the Relaxation in the combination is signified by a characteristics time of RC. It characterizes the first order 
transition in charge of conduction processes. The impedance represents a pure resistance at both extreme frequency at 
f = 0 and f =∞. Here, ‘f’ is the linear frequency (Hz). The peak in Z” is observed at the characteristic frequency (ω*, 
radians/s). The characteristic frequency (ω*) is expressed as [86]; 
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Here, f* is the characteristic linear frequency (Hz). In low frequency range, it shows impedance resolution. This indicates 
diffusionally controlled slow charge transport processes [87-89]. The large values of impedance are due to the 
insulating nature of the materials. The low-frequency impedance can be assigned to slow charge transfer at the 
interface. 

 Relaxation in the charge transfer processes cannot be represented by a single time constant. This is due to 
composite nature of the film and non-uniform surfaces. The capacitance is spatially distributed and is evidenced by a 
depressed semicircle in the Nyquist plot. In this case, distributed capacitance is represented by a constant phase 
element (Q) for which the impedance is expressed as: 
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Here, Y0 represents the admittance (i.e., 1/Z) 
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Q represents capacitance dispersion index of the constant phase element 
The Q value varies between −1 and +1.  
Q value of a pure conductance = −1, resistance ˛= 0 and capacitance = 1.  

First R–Q loop represents charge transport process in bulk material that involves a charge transfer resistance in the 
composite film phase and a double layer capacitance of electrolyte [90-92]. The second R–Q loop represents slow 
transfer processes which occur  along the whole thickness of composite. For the composite, it may indicate the 
absorption of a doping anion (Cl−) at the surface and subsequent passage through the composite via most probable 
polaron–bipolaron transition [90, 93, 94]. The low-frequency asymptotic limit of the impedance of the composite 
synthesized using two-compartment cell represents ohmic current at electrodes and hence R2 is a sum of electronic and 
ionic resistance of the composite film [90-94]. The relative contribution of electronic and ionic transport depends on 
the conductivity of the composite determined by the extent of PANI deposition in the composite film. In this case, 
resistance of second loop may be attributed to the resistance of redox reactions in PANI involving an adsorption process 
at the composite film surface. Low resistance values of both high and low frequency semicircles shows presence of 
conductive PANI phase in the composite. High capacitance values coupled with low resistance of low frequency 
semicircle indicates typical pseudocapacitance of doped PANI [95, 96]. This may be attributed to the absorption and 
diffusion of charge carrying through a thick and dense surface PANI layer. The insufficient retention of electrolyte may 
offer a significant resistance to diffusing ions through thick PANI layer and as a result, impedance curve does not 
intersect real impedance axis indicating very slow (highly hindered) diffusion through the composite film.  

Relaxation process at low frequencies has been assigned to the pseudocapacitance arising from the charge transport 
processes in PANI phase [97-99]. A typical value of ∼0.5 F of the low frequency capacitance has already been observed 
for HCl doped PANI film and is assigned to the pseudocapacitance of interfacial charge transfer [95, 96]. Charge transfer 
processes in PANI involve H+/anion coupled transport where anions are free to move along with the protonated imine 
sites in PANI [100].  

 

Figure 9 Permittivity of DL-PLA/ Cloisite 20A-PANI Composite 

Figure 9 displays variation of frequency dependence of permittivity value (or dielectric constant (ε)) and dielectric loss 
of DL-PLA/ Cloisite 20A-PANI Composite. Dielectric permittivity of the Composite measured from 0.1 MHz to 10MHz at 
room temperatures. From Figure 9, it is seen that dielectric constant is decreased at low frequency region and then is 
constant with increasing the frequency. This is due to the effect of field and/or tightly pinned to the polymer chain [101, 
102]. At low frequency region, the permanent dipoles align themselves along the field and contribute fully to the total 
polarization of the dielectric. At higher frequency region, the variation in the field is very rapid for the dipoles to align 
themselves, so their contribution to the polarization and hence, to dielectric permittivity can become negligible. 
Therefore, the dielectric permittivity, ε’ decreases with increasing frequency. Decrease of dielectric constant ε’ can be 
explained from interfacial polarization. Interfacial polarization arises as a result of difference in conducting phase, but 
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is interrupted at grain boundary due to lower conductivity. Generally in polycrystalline materials, the grains exhibit 
semi conducting behavior while the grain boundary are insulators. The maximum in the ε’’ peak shifts towards higher 
frequency region as the temperature increases indicating a thermally activated process. Variation of permittivity with 
frequency is related to the applied field that assists electron hopping between two different sites of the materials. At 
higher frequency region, the charge carriers will no longer be able to rotate rapidly, so their oscillation will begin to lay 
behind this field resulting in a decrease of dielectric permittivity, ε’. It is observed that dielectric constant ε’ is reduced 
rapidly at lower frequencies and shows almost frequency independent behavior at higher frequency region.  

  

Figure 10 AC-conductivity of DL-PLA/ Cloisite 20A-PANI Composite 

Electrical conductivity measurements are closely related to electronic properties of materials. In composites, an AC 
conductivity measurement provides useful information relating to relaxation phenomenon and co-relate with electrical 
polarization process. Figure 11 shows AC conductivity of DL-PLA/Cloisite 20A-PANI Composite at different frequencies. 
Frequency dependency (0.1 MHz-10 MHz) AC conductivity of DL-PLA/Cloisite 20A-PANI Composite at room 
temperatures is depicted in Figure 11. Expression of AC electrical conductivity (σac) is a non-linearly function of 
dielectric permittivity (εi) and angular frequency (ω = 2ᴫF). The relation is followed as in Equation 5 [77, 103-106]; 

 5.......................i0 AC  

Samples under testing, σac increases with increasing frequency. This trend is in good agreement with reported polymers 
and polymers composite materials. This is due to small polaron hopping in the polymer backbone [104].  

4. Conclusion 

DL-PLA/Cloisite 20A nanocomposite is prepared by adopting solution technique route, whereas DL-PLA/Cloisite 
20A/PANI nanocomposite is successfully synthesized. 3 wt% Cloisite 20A has exhibited higher thermal stability in 
comparison to DL-PLA polymer and PANI-ES polymer. XRD, FTIR, and UV Visible results have confirmed deposition of 
polyaniline polymer on the surface of DL-PLA/Cloisite 20A film via covalent bonding. AC electrical conductivity is 
described as a function of frequency. The nanocomposite shows low value of AC conductivity.  Developed biodegradable 
PLA nanocomposite with low dielectric loss may pave a way to disposable electronics. Combined effect of DL-PLA 
polymer and Cloisite 20A has reduced direct contact and thereby, increase the distance between matrix materials. This 
has resulted in low dielectric loss. Addition of Cloisite 20A can serve as nucleation sites to improve crystallinity of PLA 
without affecting crystal phase. Crystallinity of PLA/ Cloisite 20A/PANI nanocomposite is increased due to presence of 
PANI polymer.  
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