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Abstract 

In this paper, a common fixed point theorem for generalized contractions in bipolar metric spaces is proved. 
Additionally, these theorems expand and apply a number of intriguing findings from metric fixed point theory to the 
bipolar metric setting. I also provide a few instances to illustrate my theorems. 
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1. Introduction

Due to its numerous applications in the fields of applied mathematics and the sciences, metric fixed point theory is 
becoming more and more important in mathematics. The study of non-linear phenomena greatly benefits from the use 
of fixed-point theory. It is an interdisciplinary area of mathematics that has applications in many different areas of 
mathematics as well as in other disciplines, such as biology, chemistry, physics, engineering, game theory, mathematical 
economics, optimization issues, approximation theory, initial and boundary value issues in ordinary and partial 
differential equations, and variational inequalities.  

I can think about the distances between points in a set, in a classical or non-classical sense, using metric spaces and 
many of their generalizations. Instead of arising between points of a particular set, distances may occur between 
components of two different sets. Due to a lack of information, distances between the same kinds of sites in these 
situations are either undefined or undetermined. For instance, knowing only the distances between a food delivery 
service's sites and the available delivery addresses would be sufficient if it were assumed that each deliveryman could 
only carry one order at a time. This would avoid managing the enormous amount of information related to the distances 
between delivery addresses. In science and mathematics, there are numerous examples of these kinds of distances.  

The conventional idea of a metric space has undergone a variety of generalizations. A bipolar metric space that Ali Mutlu 
and Utku Gurdal developed and investigated [4] is one such generalization. The most important finding in fixed point 
theory, which had an impact on many scholars, was made in 1922 by the Polish mathematician Stefan Banach [1]. 

The following fixed point theorem was established by Kannan [3] in 1968. 

1.1. Theorem 1.1 

Let (𝔇, 𝜚) be a complete metric space and let Γ: 𝔇 → 𝔇be a mappingsuch that there exists 𝑘 <
1

2
 satisfying 

𝜚(Γ𝜎, Γ𝜍) ≤ 𝑘[𝜚(𝜎, Γ𝜎) + 𝑐𝜚(𝜍, Γ𝜍)]……(1.1) 
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for all 𝜎, 𝜍 ∈ 𝔇. Then, Γ has a unique fixed point 𝜔 ∈ 𝔇, and for any 𝜎 ∈ 𝔇 the sequence of iterates {Γ𝑛𝜎} converges to 
𝜔 and  

𝜚(Γ𝑛+1𝜎, 𝜔) ≤ 𝑘 (
𝑘

1 − 𝑘
)

𝑛

𝜚(𝜔, Γ𝜔), 𝑛 = 0, 1, 2, … 

The fixed point theorem of Kannan and some of its generalizations are examined in [9-13]. 

I shall discuss a common fixed-point theorem for generalized contractions in bipolar metric spaces in this article. Our 
findings extend the contractions of the metric space to a bipolar metric space by Banach's contraction and Kannan's 
contraction. Additionally, we demonstrate how our findings expand upon, generalize, and improve upon earlier findings 
in the literature on bipolar metric spaces.  

2. Preliminaries 

ℕ and ℝ refer to the set of all positive integers and the set of all real numbers, respectively, throughout this essay. We 
specifically write ℝ+ = [0, +∞) to represent the set of all non-negative reals. To make this paper self-sufficient, we 
review some mathematical fundamentals and concepts. 

2.1. Definition 2.1 (see [3])  

Let 𝔇 and 𝔈be non-empty sets.A bipolar metric on the pair (𝔇, 𝔈)is a function 𝜚: 𝔇 × 𝔈 → ℝ+ complying with following 
axioms: 

 (bm1) 𝜎 = 𝜍, if 𝜚(𝜎, 𝜍) = 0; ∀(𝜎, 𝜍) ∈ (𝔇, 𝔈). 

 (bm2) 𝜚(𝜎, 𝜍) = 0, if 𝜎 = 𝜍; ∀(𝜎, 𝜍) ∈ (𝔇, 𝔈). 

 (bm3) 𝜚(𝜎, 𝜍) = 𝜚(𝜍, 𝜎), if 𝜎, 𝜍 ∈ 𝔇 ∩ 𝔈. 

 (bm4) 𝜚(𝜎1, 𝜍2) ≤ 𝜚(𝜎1, 𝜍1) + 𝜚(𝜎2, 𝜍1) + 𝜚(𝜎2, 𝜍2), ∀𝜎1, 𝜎2 ∈ 𝔇 and , ∀𝜍1, 𝜍2 ∈ 𝔈. 

 The triple(𝔇, 𝔈, 𝜚)is called a bipolar metric space. 

On the pair (𝔇, 𝔈), 𝜚 is referred to as a bipolar pseudo-semi metric if (bm2) and (bm3) hold. It is referred to as a bipolar 
pseudo-metric if is a bipolar pseudo-semi metric satisfying (bm4). A bipolar metric is a bipolar pseudo-metric satisfying 
(bm1). A triple (𝔇, 𝔈, 𝜚) is a bipolar (pseudo-(semi)) metric space, where 𝜚  is a bipolar (pseudo-(semi)) metric on 
(𝔇, 𝔈). In specifically, a space is said to be disjointed if 𝔇 ∩ 𝔈 = ∅, and joint otherwise. The left pole and the right pole 
of (𝔇, 𝔈, 𝜚) are the sets 𝔇 and 𝔈, respectively. 

Example 2.2(see [3]) Consider the case when (𝔇, 𝜚) is a (pseudo-(semi)) metric space. Consequently, (𝔇, 𝔇, 𝜚) is a 
bipolar (pseudo-(semi)) metric space. But if (𝔇, 𝔈, 𝜚) is a bipolar (pseudo-(semi)) metric space with 𝔇 = 𝔈, then (𝔇, 𝜚) 
is a (pseudo-(semi))metric space. 

2.2. Definition 2.3(see [3])  

Let (𝔇1, 𝔈1) and (𝔇2, 𝔈2) be two pair of sets. A map Γ: 𝔇1 ∪ 𝔈1 → 𝔇2 ∪ 𝔈2 is called 

 Covariant if Γ(𝔇1) ⊆ 𝔇2And Γ(𝔈1) ⊆ 𝔈2, and it is denoted asγ: (𝔇1, 𝔈1) ⇉ (𝔇2, 𝔈2). 

 Contravariant ifγ(𝔇1) ⊆ 𝔈2And Γ(𝔈1) ⊆ 𝔇2, and it is denoted as Γ: (𝔇1, 𝔈1) ⇄ (𝔇2, 𝔈2). 

2.3. Definition 2.4(see [3])  

Let (𝔇, 𝔈, 𝜚) be a bipolar metric space. Then,  

 𝔇 = set of left points; 𝔈 = set of right points; 𝔇 ∩ 𝔈 = set of central points. In particular, if𝔇 ∩ 𝔈 = ∅, the space 
is called disjoint, and otherwise it is called joint. Unless otherwise stated, we shall work with joint spaces. 

 A sequence (𝜎𝑛) on the set 𝔇 is called a left sequence, and a sequence (𝜍𝑛)on 𝔈 is called a right sequence. In a 
bipolar metric space, a left or a right sequence is called simply a sequence. 
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 A sequence (𝜎𝑛) is said to be convergent to a point 𝜎 if and only if (𝜎𝑛) is a left sequence, lim
𝑛→∞

𝜚(𝜎𝑛, 𝜎) = 0 and 

𝜎 ∈ 𝔈, or (𝜎𝑛) is a right sequence, lim
𝑛→∞

𝜚(𝜎, 𝜎𝑛) = 0 and 𝜎 ∈ 𝔇. 

 A bisequence(𝜎𝑛, 𝜍𝑛)on (𝔇, 𝔈, 𝜚)is a sequence on the set𝔇 × 𝔈. Furthermore, if the sequences (𝜎𝑛) and (𝜍𝑛) are 
convergent, then the bisequence (𝜎𝑛, 𝜍𝑛) is said to be convergent. In addition, if (𝜎𝑛) and (𝜍𝑛)converge to a 
common point ∈ 𝔇 ∩ 𝔈 , then (𝜎𝑛, 𝜍𝑛) is called biconvergent. 

 A bisequence(𝜎𝑛, 𝜍𝑛)is a Cauchy bisequence if lim
𝑛→∞

𝜚(𝜎𝑛, 𝜍𝑛) = 0. 

2.3.1. Remark 2.5(see [3])  

In a bipolar metric space, every convergent Cauchy bisequence is biconvergent. 

2.4. Definition 2.6(see [3])  

A bipolar metric space is called complete if every Cauchy bisequence is convergent, hence biconvergent. 

Example 2.7(see [3]) Assume that 𝔈 is the class of all nonempty compact subsets of ℝ and that 𝔇 is the class of all 
singleton subsets of ℝ . We define 𝜚: 𝔇 × 𝔈 → ℝ+ as 𝜚(𝜎, 𝐴) = |𝜎 − inf(𝐴)| + |𝜎 − sup(𝐴)| . The triple (𝔇, 𝔈, 𝜚)  is a 
complete bipolar metric space. 

2.5. Definition 2.8(see [3])  

A covariant or a contravariant map S from the bipolar metric space (𝔇1, 𝔈1, 𝜚1) to the bipolar metric space (𝔇2, 𝔈2, 𝜚2) 
is continuous, if and only if 𝜎𝑛 → 𝜍 on (𝔇1, 𝔈1, 𝜚1) impliesΓ(𝜎𝑛) → Γ(𝜍) on (𝔇2, 𝔈2, 𝜚2). 

3. Main Results 

I present a common fixed theorem based on bipolar metric spaces in this section. 

3.1. Theorem 3.1  

Let (𝔇, 𝔈, 𝜚) be a complete bipolar metric space and Γ, Δ: (𝔇, 𝔈, 𝜚) ⇄ (𝔇, 𝔈, 𝜚) be contravariant mappingssuch that there 
exist constant 𝑎, 𝑏, 𝑐 ≥ 0 with𝑎 + 𝑏 + 𝑐 < 1 satisfying  

𝜚(Δ𝜍, Γ𝜎) ≤ 𝑎𝜚(𝜎, 𝜍) + 𝑏𝜚(𝜎, Γ𝜎) + 𝑐𝜚(Δ𝜍, 𝜍)……..(3.1) 

for all (𝜎, 𝜍) ∈ 𝔇 × 𝔈, with 𝜎 ≠ 𝜍. Then, Γ, Δ: 𝔇 ∪ 𝔈 → 𝔇 ∪ 𝔈 have a unique common fixed point, provided that Γ and Δ 
are continuous in (𝔇, 𝔈). 

Proof :Let𝜎0 ∈ 𝔇and 𝜍0 ∈ 𝔈. We employ one of the iterative approaches described below to define sequences {𝜎𝑛} and 
{𝜍𝑛} for each 𝑛 ∈ ℕ ∪ {0}: 

Δ𝜎2𝑛 = 𝜍2𝑛, Γ𝜎2𝑛+1 = 𝜍2𝑛+1, Δ𝜍2𝑛 = 𝜎2𝑛+1, Γ𝜍2𝑛+1 = 𝜎2𝑛+2…….(3.2) 

By (3.1), we now obtain 

𝜚(𝜎2𝑛+1, 𝜍2𝑛+1) = 𝜚(Δ𝜍2𝑛, Γ𝜎2𝑛+1)……….(3.3) 

≤ 𝑎𝜚(𝜎2𝑛+1, 𝜍2𝑛) + 𝑏𝜚(𝜎2𝑛+1, Γ𝜎2𝑛+1) + 𝑐𝜚(Δ𝜍2𝑛, 𝜍2𝑛) 

= 𝑎𝜚(𝜎2𝑛+1, 𝜍2𝑛) + 𝑏𝜚(𝜎2𝑛+1, 𝜍2𝑛+1) + 𝑐𝜚(𝜎2𝑛+1, 𝜍2𝑛) 

The last inequality provides 

𝜚(𝜎2𝑛+1, 𝜍2𝑛+1) ≤ (
𝑎+𝑐

1−𝑏
) 𝜚(𝜎2𝑛+1, 𝜍2𝑛)………..(3.4) 

We also acquire 

𝜚(𝜎2𝑛+1, 𝜍2𝑛) = 𝜚(Δ𝜍2𝑛, Δ𝜎2𝑛)………..(3.5) 
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≤ 𝑎𝜚(𝜎2𝑛, 𝜍2𝑛) + 𝑏𝜚(𝜎2𝑛, Δ𝜎2𝑛) + 𝑐𝜚(Δ𝜍2𝑛, 𝜍2𝑛) 

= 𝑎𝜚(𝜎2𝑛, 𝜍2𝑛) + 𝑏𝜚(𝜎2𝑛, 𝜍2𝑛) + 𝑐𝜚(𝜎2𝑛+1, 𝜍2𝑛) 

The last inequality gives 

𝜚(𝜎2𝑛+1, 𝜍2𝑛) ≤ (
𝑎+𝑏

1−𝑐
) 𝜚(𝜎2𝑛, 𝜍2𝑛)……….(3.6) 

Let 𝑘 be the maximum of 
𝑎+𝑐

1−𝑏
, and 

𝑎+𝑏

1−𝑐
. Then,𝑘 < 1 and based on (3.4) and (3.6), we deduce that  

𝜚(𝜎2𝑛+1, 𝜍2𝑛+1) ≤ 𝑘4𝑛+2𝜚(𝜎0, 𝜍0) 

and  

𝜚(𝜎2𝑛+1, 𝜍2𝑛) ≤ 𝑘4𝑛+1𝜚(𝜎0, 𝜍0) 

Now, for each 𝑛 ∈ ℕ, we may obtain that 

𝜚(𝜎𝑛+1, 𝜍𝑛+1) ≤ 𝑘2𝑛+2𝜚(𝜎0, 𝜍0), 

𝜚(𝜎𝑛+1, 𝜍𝑛) ≤ 𝑘2𝑛+1𝜚(𝜎0, 𝜍0), 

𝜚(𝜎𝑛, 𝜍𝑛) ≤ 𝑘2𝑛𝜚(𝜎0, 𝜍0). 

We also take into account the following scenarios for all 𝑚, 𝑛 ∈ ℕ: 

3.2. Case 1  

If𝑚 > 𝑛, we have 

𝜚(𝜎𝑛, 𝜍𝑚) ≤ 𝜚(𝜎𝑛, 𝜍𝑛) + 𝜚(𝜎𝑛+1, 𝜍𝑛) + 𝜚(𝜎𝑛+1, 𝜍𝑚) 

≤ 𝑘2𝑛𝜚(𝜎0, 𝜍0) + 𝑘2𝑛+1𝜚(𝜎0, 𝜍0) + 𝜚(𝜎𝑛+1, 𝜍𝑚) 

≤ (𝑘2𝑛 + 𝑘2𝑛+1)𝜚(𝜎0, 𝜍0) + 𝜚(𝜎𝑛+1, 𝜍𝑛+1) + 𝜚(𝜎𝑛+2, 𝜍𝑛+1) + 𝜚(𝜎𝑛+2, 𝜍𝑚) 

≤ (𝑘2𝑛 + 𝑘2𝑛+1)𝜚(𝜎0, 𝜍0) + (𝑘2𝑛+2 + 𝑘2𝑛+3)𝜚(𝜎0, 𝜍0) + 𝜚(𝜎𝑛+2, 𝜍𝑚) 

≤ 𝑘2𝑛(1 + 𝑘 + 𝑘2 + 𝑘3 + ⋯ + 𝑘2(𝑚−𝑛))𝜚(𝜎0, 𝜍0) 

≤ 𝑘2𝑛 (
1 − 𝑘2(𝑚−𝑛)+1

1 − 𝑘
) 𝜚(𝜎0, 𝜍0) 

Hence, lim
𝑚,𝑛→∞

𝜚(𝜎𝑛, 𝜍𝑚) = 0. 

3.3. Case 2  

If 𝑚 < 𝑛, we have 

𝜚(𝜎𝑛, 𝜍𝑚) ≤ 𝜚(𝜎𝑚+1, 𝜍𝑚) + 𝜚(𝜎𝑚+1, 𝜍𝑚+1) + 𝜚(𝜎𝑛, 𝜍𝑚+1) 

≤ 𝑘2𝑚+1𝜚(𝜎0, 𝜍0) + 𝑘2𝑚+2𝜚(𝜎0, 𝜍0) + 𝜚(𝜎𝑛, 𝜍𝑚+1) 

≤ (𝑘2𝑚+1 + 𝑘2𝑚+2)𝜚(𝜎0, 𝜍0) + 𝜚(𝜎𝑚+2, 𝜍𝑚+1) 

+𝜚(𝜎𝑚+2, 𝜍𝑚+2) + 𝜚(𝜎𝑛, 𝜍𝑚+2) 
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≤ (𝑘2𝑚+1 + 𝑘2𝑚+2)𝜚(𝜎0, 𝜍0) + (𝑘2𝑚+3 + 𝑘2𝑚+4)𝜚(𝜎0, 𝜍0) + 𝜚(𝜎𝑛, 𝜍𝑚+2) 

≤ 𝑘2𝑚+1(1 + 𝑘 + 𝑘2 + 𝑘3 + ⋯ + 𝑘2(𝑚−𝑛−1))𝜚(𝜎0, 𝜍0) 

≤ 𝑘2𝑚+1 (
1 − 𝑘2(𝑚−𝑛)−1

1 − 𝑘
) 𝜚(𝜎0, 𝜍0) 

Since, 𝑘 < 1, hence, lim
𝑚,𝑛→∞

𝜚(𝜎𝑛, 𝜍𝑚) = 0.This indicates that 𝜚(𝜎𝑛, 𝜍𝑚)can be made arbitrarily small by large 𝑚 and 𝑛, 

and hence (𝜎𝑛, 𝜍𝑚) is a Cauchybisequence in (𝔇, 𝔈).The bisequence(𝜎𝑛, 𝜍𝑚)biconverges to some 𝜎∗ ∈ 𝔇 ∩ 𝔈 such that 
lim

𝑛→∞
𝜎𝑛 = lim

𝑛→∞
𝜍𝑛 = 𝜎∗ due to the completeness of (𝔇, 𝔈, 𝜚).Also lim

𝑛→∞
Δ𝜎2𝑛 = lim

𝑛→∞
𝜍2𝑛 = 𝜎∗ ∈ 𝔇 ∩ 𝔈 implies that Δ𝜎2𝑛has 

a unique limit 𝜎∗, and 𝜎𝑛 → 𝜎∗ implies that 𝜎2𝑛 → 𝜎∗. Now, Δ𝜎2𝑛 → Δ𝜎∗ is implied by the continuity of Δ. Consequently, 
Δ𝜎∗ = 𝜎∗. 

In a similar way, the statements Γ𝜍2𝑛+1 = 𝜎2𝑛+2 = 𝜎∗ ∈ 𝔇 ∩ 𝔈 implies that Γ𝜍2𝑛+1  has a unique limit𝜎∗ , and 𝜍𝑛 → 𝜎∗ 
implies that 𝜍2𝑛+1 → 𝜎∗ . Now, Γ𝜍2𝑛+1 → Γ𝜎∗  follows from the continuity of Γ . Consequently, Γ𝜎∗ = 𝜎∗ . Thus, Δ𝜎∗ =
Γ𝜎∗ = 𝜎∗. 

We shall now prove the uniqueness of the common fixed point. If𝜍∗ ∈ 𝔇 ∩ 𝔈is another common fixed point of 𝛥and𝛤, 
that is,𝛥𝜍∗ = 𝛤𝜍∗ = 𝜍∗,then we get 

𝜚(𝜍∗, 𝜎∗) = 𝜚(𝛥𝜍∗, 𝛤𝜎∗) ≤ 𝑎𝜚(𝜎∗, 𝜍∗) + 𝑏𝜚(𝜎∗, 𝛤𝜎∗) + 𝑐𝜚(𝛥𝜍∗, 𝜍∗) 

≤ 𝑎𝜚(𝜎∗, 𝜍∗) + 𝑏𝜚(𝜎∗, 𝜎∗) + 𝑐𝜚(𝜍∗, 𝜍∗). 

Therefore, 𝜚(𝜍∗, 𝜎∗) ≤ 𝑎𝜚(𝜎∗, 𝜍∗),which is contradictory, and hence, 𝜎∗ = 𝜍∗. 

Theorem 3.1 can now be verified by the example given below. 

Example 3.2 Let 𝔇 = {7, 8, 11, 17}  and 𝔈 = {2, 4, 17, 18} . Define 𝜚: 𝔇 × 𝔈 → ℝ+ as the usualmetric, 𝜚(𝜎, 𝜍) = |𝜎 − 𝜍| . 
Then, the triple (𝔇, 𝔈, 𝜚) is a complete bipolar metric space. The contravariant mappings Γ, Δ: (𝔇, 𝔈, 𝜚) ⇄
(𝔇, 𝔈, 𝜚)defined by 

Γ𝜎 = {
17, 𝜎 ∈ 𝔇 ∪ {18}
18, otherwise

 

and  

Δ𝜎 = {
17, 𝜎 ∈ {17,18}
18, otherwise

 

Satisfy the inequality of Theorem 3.1 for 𝑎 =
1

4
, 𝑏 =

1

5
 and 𝑐 =

1

5
and 147 ∈ 𝔇 ∩ 𝔈 is the only commonfixed point of Γ and 

Δ. 

4. Conclusion 

In this work, we have taken advantage of the notion of bipolar metric to present new contraction conditions. Next, we 
proved a common fixed point theorems in the context of bipolar metric spaces. An example is provided to show the 
validity and usefulness of our findings. 
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