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Abstract

Recent studies have shown that researchers have proposed various techniques for Pothole detection using data
collected from different parts of the world. Automating pothole detection will go a long way in providing safe driving
for road users and intelligent transportation systems. This is not only necessary to guarantee safe and adequate
performance, but also to adjust to the drivers’ needs, potentiate their acceptability, and ultimately meet drivers’
preferences in bad roads. This paper presents a computer vision model that assists drivers by detecting and predicting
potholes while on the road to curb road accidents. The datasets used in this research were potholes images extracted
from kaggle which were classified into two; potholes and normal roads. The object detection algorithm that was used
to evaluate the model is YOLO 5. The results from the parallel testing provided good results in detecting and predicting
normal roads and potholes. The predicted values were all positive. The two classifiers were all detected perfectly in
while testing without being perverse. The system presents its predicted value in percentage, therefore showing the level
of adherence to each of the classes detected.

Keywords: Safe driving; Object detection; YOLO 5; Asphalt cracks detection.

1. Introduction

Road cracks and potholes are types of defects in the pavements that can disturb the safety and quality of the roads. The
similarity are much as both means a bad occurrences on asphalt that can lead to deep death traps on the roads.
Therefore in this research this two terms will be interwoven. A pothole is a natural cave or a hollow on the road surface
formed as a result of erosion or aging of asphalt [1]. Potholes pose a lot of dangers for road transport users in many
developing countries, especially in Nigeria. The task of maintaining roads and removing these road anomalies is an
expensive and tedious one, due to the nature of landmass and climate conditions in Nigeria. It is reported that pothole
is the second largest cause of accidents in Nigeria apart from overspeeding and reckless driving with annual reported
accidents surpassing 45% [2]. The problem of potholes in Nigeria cannot be eradicated completely by the government
but rather how to manage it and drive safely. The roads have been a concern of authorities to avoid unwanted
circumstances. These roads are vulnerable to scenarios such as traffic load, weather conditions, age, poor material used
for construction, and miserable drainage system, exhibiting two major road failures such as cracks and potholes.
Potholes are essentially concave-shaped depressions in the road surface that require attention as they induce awful
circumstances such as accidents, unpleasant driving experiences, and malfunctioning of vehicles. Potholes should be
dealt with on a priority basis to minimize their contribution towards unfortunate scenarios.

According to the prediction made by WHO (World Health Organization), road accidents will become the fifth leading
cause of death in 2030 [3]. The significance of potholes created conspicuous interest for the researchers of the civil
community. The developing nations use manual inspection methods to recognize the potholes leading to inaccurate
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estimation as it is highly dependent on individual experience. These manual inspection methods require human
interventions that are time consuming and costly. Many technical solutions exist for pothole detection such as scanning
based with 3D reconstruction [4], vibration sensor based [5], thermal imaging [6], and computer vision based [7].

2. Material and methods

In this section, we described the materials and methods used for the development of an intelligent mobile application
for pothole detection.

2.1. Data Collection

The dataset used in this work were extracted from an online data source known as Kaggle. This dataset consists of
images for road potholes along with the annotations. The feature of these datasets i.e., class value has two possible
values which are pothole and normal, these driving events are the class labels. The dataset containing a total of 700 000
images with a total size of 10.1GB was used in this work.

2.2. Model Selection

We adopted the Yolo 5 model for this work because it improves object detection by taking advantage of spatiotemporal
features and maintaining frames per second above 30. Its timely handgun detection is a crucial problem to improve
public safety.

2.3. Data Preprocessing

The local dataset is preprocessed by applying basic image processing techniques such as normalization, resizing, and
thresholding. The images are resized to 64x64 pixels to improve the performance of the model. The dataset was already
annotated on extraction from kaggle. Figure 1a, b, c and d contain sample images with labels using labelling tool.
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Figure 1a Sample Image Label for Potholes
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Figure 1b Sample Image Label for Potholes
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Figure 1c Sample Image Label for Potholes
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Figure 1d Label Image for normal road

165



International Journal of Science and Research Archive, 2023, 10(01), 163-179

2.4. Programme Module

The dataset is labeled with Python programming language and Jupyter Notebook. 80% of the dataset was used for
training and 20% for testing.

2.5. Datasets

Table 1 Sample Image dataset

S/N | Image Train Class Nominal

1 [‘pothole’,
normal’]

2 [normal’,
‘pothole’]
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[‘0: pothole’,/1:
normal’]
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3. Results and Discussions

The experiment of the classification model was done with the training set, which was used to build the model. The test
set is now used for detecting and predicting the result with the class labels as well as predicting a new class label with
their respective class. The model results and analysis are presented hereunder.

3.1. Image Trained Image
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Figure 2a Tensorboard- Image trained Modules
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Figure 2c Tensorboard- Image trained Modules
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3.1.1. Model Training Sample Data set using YOLOvS5
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Figure 3 Sample YOLOvV5 performance training process

Figure 3 show the level of model percentage accuracy assign to them, which presents the level of detection and
prediction from the training image.

3.2. Performance Evaluation of the model

e Plotting labels to runs/train/results_11/labels.jpg...
e Image sizes 640 train, 640 val

e Using 2 dataloader workers

e Logging results to runs/train/results_11

e  Starting training for 25 epochs...
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Epoch CGPU_mem box_loss obj_loss cls_loss Instances Size|
024 6.090 0.09632 0.03241 0.02531 T 640 1007 3434 [00:34=00-00, 1.033']
Class Images Instances i3 R mAPI) mAF50.95: 1007 373
[00:02=00:00, 1.28it's]
All 57 157 0.173 0.0877 0.0513 00151
Epoch GPU_mem box_loss obj_loss els_lose Instances Size
1724 1.99G 0.07188 0.04532 0.01243 a3 640: 100%% 3434 [00:35=00-00, 1.032x]
Class Images Instances P R mAPED mAPS0-95: 1000 373
[00:01-<00:00, 1.80i/s]
All 67 157 0.2 0451 0.148 0.0474
Epoch | | GPU_mem | | box_loss |  ohj_loss |  cls losz |  Imstamces | sige
2524 1.90G 0.06824 0.0401 0003929 32 B40; 100% 34734 [00:33=00-00, 1.02t's]
Class Images Instances [ R mAPED mAPS0.95: 100%: 33
[00:01<00:00, 2.03it’s]
All 67 157 0.148 0317 0.126 0.0417
Epoch GPU_mem hox_loss ohj_loss cls_lozs Instances Size
324 700G 0.06281 003964 0003697 21 640; 1007 34734 [00:36=00-00, 1.08s/t]
Clazs Tmages Instamees P j3 mAPED mAPEDE: 100%: 373
[00:02<00:00, 1.40i]
Class Images Instances P R mAPS() mAPS0-95: 100% 3/3
[00:02=00:00, 1.4%it/s]
All &7 157 0433 0424 0.386 0.141
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
424 188G 0.03793 0.03633 0.002606 41 640: 100% 34/34 [00:34=00:00, 1.03s/1t]
Class Images Instances P R mAP30 mAPS0-95: 100% 33
[00:01=00:00, 2.07it/s]
All 67 157 03353 033 0344 0.149
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
524 199G 0.05444 0.03919 0.002334 34 640: 100% 34/34 [00:34=00:00, 1.022/it]
Class Images Instances P R mAPS0 mAPS0-95: 100% 33
[00:01=00:00, 1.91it/s]
All 657 157 0421 0.464 0411 0.183
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
6/24 180G 0.05078 0.03765 0001724 45 640: 100% 34/34 [00:31=00:00, 1.071t']
Class Images Instances P R mAPS0 mAPS0-95: 100% 33
[00:01=00:00, 2.04it/s]
All &7 157 0.548 0.566 0.323 0217
Epech GPU_mem box_loss obj_loss cls_loss Instances Size
724 199G 0.04866 0.03694 0.001718 41 640: 100% 34/34 [00:32<00:00, 1.06it'z]
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Class Images Instances P R mAP30 mAP30-95: 100% 373
[00:02=00:00, 1.4%1t%]
All &7 157 0.433 0.424 0386 0.141
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
424 199G 0.03793 0.03633 0.002606 41 640: 100% 34/34 [00:34<00:00, 1.033/it]
Class Images Instances P R mAP30 mAP30-95: 100% 313

[0:0:01=00:00, 2.07it'%]

Al 57 157 0335 053 0344 0.149

Epoch GPU_mem box_loss obj_loss cls_loss Instances Size

524 199G 0.05444 0.03919 0.002354 34 640: 100% 34/34 [00:34=00:00, 1.02s/it]
Class Images Instances P R mAPS0 mAPS0-95: 100% 3/3
[00:01<00:00, 1.911t/%]
All 67 157 0.421 (.464 0411 0.183
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
£/24 199G 0.03078 003763 0.001724 43 640 100% 34/34 [00:31=00:00, 1.071t/s]
Class Images Instances P R mAPS) mAPS0-95: 100% 3/3

[00:01=00:00, 2.04it/s]

All &7 157 0.348 0.366 0.323 0.217

Epoch GPU_mem box_loss obj_loss cls_loss Instances Size

124 109G 0.04866 0.03604 0.001718 41 640: 100% 34734 [00:32=00:00, 1.061¢/s]

Figure 4 A log output of the model

Figure 4 presents a log output YOLOV5 model that is being trained on pothole and normal road for object detection.
Here's a breakdown of what each column represents:

e Epoch: This refers to which epoch (iteration) of the training process the model is currently on.

e GPU_mem: This indicates the amount of memory (in gigabytes) that the GPU is currently using to train the
model.

e box_loss, obj_loss, and cls_loss: These three columns refer to the losses for the bounding boxes, objectness,
and class predictions, respectively. These values are used to optimize the model during training.

o Instances: This represents the total number of instances (objects) detected in the training data.

e Size: This is the size of the images being used for training, in pixels.

e (lass,Images, Instances, P, R, mnAP50, mAP50-95: These columns are related to the evaluation of the model's
performance on a validation set. P stands for precision, R for recall, and mAP for mean average precision. These
are metrics used to evaluate the accuracy of object detection models. The numbers in the table represent the
precision, recall, and mAP50 and mAP50-95 scores for all classes combined, based on the validation set.

Overall, this log output provides a summary of the training progress and performance of the object detection model.
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Precision-Confidence Curve
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3.3. Classification Report for model evaluation metrics with YOLOV5

Table 2 Details by categories of classification model

Class Images | Instances | P R mAP50 | mAP50-95: 100% 3/3 [00:01<00:00, 1.65it/s]
All 67 157 0.594 | 0.57 | 0.568 0.28

Normal | 67 33 0.525 | 0.576 | 0.525 0.276

Pothole | 67 124 0.663 | 0.565 | 0.612 0.287

3.4. Contengency table/confusion matrix

backgraund

Figure 12 Contingency Table

4., Conclusion

This work presented a unique set of data with real time data collected from Nigeria and dataset from Kaggle which is
now proven to be trainable with good predictions that can be adopted by researchers working on computer vision for
pothole detection in Nigeria and indeed Africa. Among many other models that has been adopted for this related study,
YOLOV5 has proven to be a good model with good prediction and perfect detection for the two classes of data trained in
this research. This research will go a long way in deploying an embedded system or mobile applications for pothole
detection and prediction in automobiles by the industries. Therefore there is need to train more road characteristics to
help improve safe driving in the world. Our future research will be on deploying the results into mobile applications or
embedded systems for intelligent transportation system.
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