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Abstract 

The flow and heat transfer of Jeffrey nanofluid over a stretching sheet with non-uniform heat source/sink is considered 
in the present analysis. Effects of nonlinear thermal radiation and second order slip are taken along with uniform 
magnetic field. System of partial differential equations governing the described problem is reduced to nonlinear 
ordinary differential equations with aid of similarity transformations. Further, reduced equations are solved 
numerically using Runge-Kutta-Fehlberg 45 order method with shooting technique. Effects all flow pertinent 
parameters are recorded in terms of tables and graphs. The results are studied with help of plotted graphs, tables. 
Results are compared with existing one for some limiting cases and are found to be excellent agreement. It is found that 
both first, second order velocity slip parameters reduces the thickness of momentum boundary layer and hence 
decrease the velocity as a result of this one can find the increase in thermal boundary layer. 

Keywords: Nonlinear thermal radiation; Second order slip flow; Jeffrey nanofluid; Stretching sheet; Non-uniform heat 
source/sink; Numerical solution.  

1. Introduction

Boundary layer flow over a stretching surface with velocity slip and temperature-jump boundary conditions is an 
important type of flow and heat transfer occurring in several engineering applications. In these types of transport 
phenomena, the equations corresponding to continuum equations of momentum and energy are still governed by the 
Navier-Stokes equations, but the effects of the walls are taken into account by using appropriate boundary conditions. 
No-slip condition is inadequate for most non-Newtonian liquids, as some polymer melt often shows microscopic wall 
slip and that has a controlling influence by a nonlinear and monotone relation between the slip velocity and the traction. 
It is known that, a viscous fluid normally sticks to boundary and there is no slip of the fluid relative to the boundary. 
However, in some situations there may be a partial slip between the fluid and the boundary. For such fluid, the motion 
is still governed by the Navier Stokes equations, but the usual no-slip condition at the boundary is replaced by the slip 
condition. Partial velocity slip may occur on the stretching boundary when the fluid is particulate such as emulsions, 
suspensions, foams and polymer solutions. In various industrial processes, slip effects can arise at the boundary of the 
pipes, walls, curved surfaces etc. A boundary layer slip flow problem arises in polishing of artificial heart valves and 
internal cavities. Recently many authors obtained analytical and numerical solutions for boundary layer flow and heat 
transfer due to a stretching sheet with slip boundary conditions. 
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Some of the authors have considered second order slip boundary conditions to study the flow, heat and mass transfer 
by employing boundary layer approximations and seeking similarity solutions [1-5]. Khader [6] obtained numerical 
solution by Laguerre collocation method to study the effect of viscous dissipation on the steady flow with heat transfer 
of Newtonian fluid towards a permeable stretching surface embedded in a porous medium with second order slip effect. 
Abdul Hakeem et al [7] performed both numerical and analytical solution to study the effect of magnetic field on a steady 
two dimensional laminar radiative flow of an incompressible viscous water based nanofluid over a stretching/shrinking 
sheet with second order slip boundary condition. Very recently, Mabood and Mastroberardinob [8] considered the 
second order slip boundary conditions to investigate the effects of viscous dissipation and melting on MHD boundary 
layer flow of an incompressible, electrically conducting water-based nanofluid over a stretching sheet. Hayat et al [9] 
studied a steady three-dimensional boundary layer flow of water based nanofluid with copper as nanoparticle over a 
permeable stretching surface with second order velocity slip and homogeneous–heterogeneous reactions. Zhu et al [10] 
have investigated the effects of the second-order velocity slip and temperature jump boundary conditions on the 
magnetohydrodynamic (MHD) flow and heat transfer of water-based nanofluids containing 𝐶𝑢  and 𝐴𝑙2𝑂3  in the 
presence of thermal radiation. Megahed [11] obtained numerical solution to study the boundary layer flow and heat 
transfer for an electrically conducting Casson fluid over a permeable stretching surface with second-order slip velocity 
model and thermal slip conditions in the presence of internal heat generation/absorption and thermal radiation.  
Further, he has shown that an increase in the velocity and thermal slip parameters results in decrease of the rate of heat 
transfer. 

Heat transfer, influenced by  thermal radiation  has  applications in many technological   processes, including nuclear 
power plants, gas turbines and various propulsion devices for aircraft, missiles, satellites and space vehicles. A linear 
radiation is not valid for high temperature difference and also dimensionless parameter that is used in the linearized 
Rosseland approximation is only the effective Prandtl number, whereas in case of non-linear approximation the 
problem is governed by three parameters, Prandtl number, the radiation parameter and the temperature ratio 
parameter. First time in the literature, Pantokratoras [12] investigated the effect of linear/nonlinear Rosseland 
radiation on steady laminar natural convection along a vertical isothermal plate by using a new radiation parameter 
called film radiation parameter. Hayat et al [9] analysed the effect of nonlinear thermal radiation and constant applied 
magnetic field on magnetohydrodynamic  three-dimensional flow of couple stress nanofluid and viscous nanofluid in 
the presence of thermophoresis and Brownian motion effects. Shehzad et al [13] have explored the characteristics of 
thermophoresis and Brownian motion in magnetohydrodynamic three-dimensional flow of nano-Jeffrey fluid in the 
presence of nonlinear thermal radiation. 

In the recent year, non-Newtonian nanofluid has become more and more important due to its enormous industrial 
applications. Many studies are focused on non-Newtonian fluid as a base fluid with suspended nanoparticles over a 
stretching sheet. Hayat et al. [14] studied the effects of thermophoresis and Brownian motion on the three-dimensional 
(3D) boundary layer flow and convective heat transfer of Jeffrey nanofluid over a bi-directional stretching surface with 
newly developed boundary condition with zero nanoparticles mass flux. Shehzad et al. [15, 16] investigated the effects 
of convective heat and concentration conditions in magnetohydrodynamic two-dimensional and three-dimensional 
flow of Jeffrey nanofluid fluid with nanoparticles. Dalira et al. [17] numerically studied the entropy generation for steady 
laminar two-dimensional forced convection magnetohydrodynamic (MHD) boundary layer flow, heat transfer and mass 
transfer of an incompressible non-Newtonian nanofluid over a linearly stretching, impermeable and isothermal sheet 
with viscous dissipation. Abbasi [18] analyzed the influence of heat and mass flux conditions on hydromagnetic steady 
flow of Jeffrey fluid in the presence of thermal radiation with Brownian motion and thermophoresis effects. 

Another important aspect, which influences heat transfer processes, is heat source/sink effect. Many of the authors have 
studied the heat transfer by considering a uniform and non-uniform heat source/sink effects, which are crucial in 
controlling the heat transfer.  Pal [19] studied the effects of unsteadiness parameter, thermal radiation, 
suction/injection parameter and non-uniform heat source/sink parameter on flow and heat transfer characteristics of 
an incompressible viscous fluid over an unsteady stretching permeable surface. Hakeem et al [20] investigated the effect 
of non-uniform heat source/sink on heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet in 
the presence of thermal radiation. Manjunatha et al [21] presented numerical results to study the heat transfer analysis 
of steady two dimensional flow of conducting dusty fluid over a stretching cylinder immersed in a porous media under 
the influence of non-uniform source/sink. Pal and Chatterjee [22] have carried out a numerical solution to study the 
effects of viscous-Ohmic dissipation and variable thermal conductivity on steady two-dimensional hydromagnetic flow, 
heat and mass transfer of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with 
non-uniform heat source/sink and thermal radiation. Dhanai et al [23] obtained multiple solutions in MHD boundary 
layer flow and heat transfer of power-law nanofluid past a permeable nonlinear shrinking sheet with heat source/sink. 
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Based on the observations from the above cited work, the purpose of present paper is to analyze the effect of second 
order slip and nonlinear thermal radiation and non-uniform heat source/sink on heat and momentum transfer of steady 
two-dimensional slip flow of a nanofluid over a stretching sheet. Governing nonlinear ordinary differential equations 
obtained after the application of similarity transformations are solved numerically by means of Runge-Kutta-Fehlberg-
45 order method. The effects of different flow parameters on flow fields are elucidated through graphs and tables.  

2. Mathematical formulation 

Let us consider a steady flow of an incompressible Jeffrey nanofluid over a horizontal stretching surface. The flow region 
is confined to 𝑦 > 0 and the plate is stretched along 𝑥-axis with a velocity𝑈𝑤 = 𝑎𝑥, where 𝑎 is a positive constant. A 
uniform magnetic field 𝐵0 is applied in the transverse direction 𝑦 normal to the plate. The nanofluid is assumed to be 
single phase, in thermal equilibrium and there is a slip velocity between the base fluid and particles. The stretching 
surface temperature and the nanoparticles fraction are deemed to have a constant value 𝑇𝑤 and 𝐶𝑤 , respectively. The 
ambient fluid temperature and nanoparticales fraction have constant value 𝑇∞  and𝐶∞ , respectively. The coordinate 
system and flow regime is illustrated as shown in the figure (1). 

 

Figure 1 Physical model and coordinate system 

It is well known that the constitutive equations for a Jeffrey fluid are given by Bilal Ashraf [24] 

 𝜏 = −𝑝𝐼 + 𝑆, 

 𝑆 =
𝜇

1+𝜆
[𝑅1 + 𝜆1 (

𝜕𝑅1

𝜕𝑡
+ 𝑉. ∇) 𝑅1],  

Where 𝜏 is the Cauchy stress tensor, 𝑆 is the extra stress tensor, 𝜇 is the dynamic viscosity, 𝜆 and 𝜆1 are the material 
parameters of Jeffrey fluid and 𝑅1 is the Rivlin–Ericksen tensor defined by 

 𝑅1 = (∇𝑉) + (∇𝑉)′. 

Under usual boundary layer approximations governing two-dimensional equations for the present problem are given 
as: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,     (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜈

1+𝜆
[

𝜕2𝑢

𝜕𝑦2 + 𝜆1 (𝑢
𝜕3𝑢

𝜕𝑥𝜕𝑦2 + 𝑣
𝜕3𝑢

𝜕𝑦3 −
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2 +
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
)] −

𝜎𝐵0
2

𝜌𝑓
𝑢,     (2) 
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𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
𝜌𝑝𝑐𝑝

(𝜌𝑐)𝑓
[𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝐷∞
(

𝜕𝑇

𝜕𝑦
)

2

] −
1

(𝜌𝑐)𝑓

𝜕𝑞𝑟

𝜕𝑦
+ 

𝑞′′′

(𝜌𝑐)𝑓
, (3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2+
𝐷𝑇

𝐷∞

𝜕2𝑇

𝜕𝑦2 − 𝑘1(𝐶 − 𝐶∞).  (4) 

The corresponding boundary conditions are given by, 

𝑢 = 𝑈𝑤 + 𝑈𝑠𝑙𝑖𝑝, 𝑣 = 0, 𝑇 = 𝑇𝑤 , 𝐶 = 𝐶𝑤 at 𝑦 = 0, 

𝑢 = 0, 𝑇 = 𝑇∞,   𝐶 = 𝐶∞,   as 𝑦 → ∞,               (5) 

Where 𝑈𝑠𝑙𝑖𝑝  is the slip velocity at the surface and it is negative due to stretching. Wu’s [25] slip velocity model used in 

this paper and is valid for arbitrary Knudsen numbers and is given as follows: 

 𝑈𝑠𝑙𝑖𝑝  =
2

3
(

3−𝜒𝑙3

𝜒
−

3

2

1−𝑙2

𝐾𝑛
)  𝜔

𝜕𝑢

𝜕𝑦
=

1

4
[𝑙4 +

2

𝐾2
𝑛

(1 − 𝑙2)] 𝜔2 𝜕2𝑢

𝜕𝑦2 =  𝐴 
𝜕𝑢

𝜕𝑦
 + 𝐵 

𝜕2𝑢

𝜕𝑦2    (6) 

Where𝑙 = min [
1

𝑘𝑁
, 1] , 𝜒 is the momentum accommodation coefficient with0 ≤  𝜒 ≤  1, 𝜔 is the molecular mean free 

path, and 𝐾𝑛 is the Knudsen number defined as the mean free path 𝜔 divided by a characteristic length for the flow. 
Based on the definition of  𝑙, it is seen that for any given value of 𝐾𝑛, we have 0 ≤  𝑙 ≤  1. The molecular mean free path 
is always positive. Thus we know that 𝐵 <  0 and 𝐴 is a positive number.   

Here, 𝑞′′′ is the space and temperature dependent internal heat generation/absorption (non uniform heat source/sink) 
which can be expressed as, 

𝑞′′′ = (
𝑘𝑈𝑤(𝑥)

𝑥𝜈
) [𝐴∗(𝑇𝑤 − 𝑇∞)𝑓′(𝜂) + 𝐵∗(𝑇 − 𝑇∞)]                  (7) 

Where𝑇𝑤 and 𝑇∞ denote the temperature at the wall and at large distance from the wall respectively. 𝐴∗and 𝐵∗ are the 
parameters of the space and temperature dependent internal heat generation/absorption. It is to be noted that 𝐴∗ and 
𝐵∗ are positive to internal heat source and negative to internal heat sink.  

Unlike the linearized Rosseland approximation, we use nonlinear Rosseland diffusion approximation from which one 
can obtain results for both small and large differences between 𝑇𝑤  and 𝑇∞ . Using Rosseland [26] approximation for 
radiation, the radiative heat flux is simplified as, 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
.  (8) 

For a boundary layer flow over a horizontal flat plate (Pantokratoras and Fang [12]), from equation (8) we get, 

𝑞𝑟 = (−
16𝜎∗𝑇∞

3

3𝑘∗ )
𝑑𝑇

𝑑𝑦
.    (9) 

In view to equation (9), energy equation (3) will becomes 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜕

𝜕𝑦
[(𝛼 +

16𝜎∗𝑇∞
3

3𝑘∗(𝜌𝑐)𝑓
)

𝜕𝑇

𝜕𝑦
] +

𝜌𝑝𝑐𝑝

(𝜌𝑐)𝑓
[𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝐷∞
(

𝜕𝑇

𝜕𝑦
)

2

] +
𝑞′′′

(𝜌𝑐)𝑓
     (10) 

Where 𝛼 =
𝑘

(𝜌𝑐)𝑓
, 𝑘 being the thermal conductivity. 

 The governing equations can be reduced to ordinary differential equations, using the following similarity 
transformations, 

𝑢 = 𝑎𝑥𝑓′(𝜂),    𝑣 = −√𝑎𝜈𝑓(𝜂),    𝜂 = √
𝑎

𝜈
𝑦, 
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𝑇 = 𝑇∞(1 + (𝜃𝑤 − 1)𝜃(𝜂)),    𝜙(𝜂) =
𝐶—𝐶∞

𝐶𝑤−𝐶∞
.   (11) 

where 𝜃𝑤 =
𝑇𝑤

𝑇∞
,   𝜃𝑤 > 1, the temperature ratio parameter (Shehzad et al. [13]). 

With the help of aforementioned transformations, equation (1) is identically satisfied and equations (2), (4) and (10) 
will take the following forms; 

𝑓′′′ + (1 + 𝜆)[𝑓𝑓′′ − 𝑓′2] + 𝛽[𝑓′′2 − 𝑓𝑓′′′′] − (1 + 𝜆)(𝑀)𝑓′ = 0,  (12) 

  

[1 + 𝑁𝑟 (1 + (𝜃𝑤 − 1)𝜃)3𝜃′]′ + Pr[𝑓𝜃′ + 𝑁𝑏𝜙′𝜃′ + 𝑁𝑡(𝜃′)2] 

  +𝐴∗𝑓′(𝜂) + 𝐵∗𝜃(𝜂) = 0,                      (13) 

𝜙′′ + 𝐿𝑒𝑓𝜙′ +
𝑁𝑡

𝑁𝑏
𝜃′′ − 𝛾𝜙 = 0.             (14) 

The corresponding boundary conditions are; 

𝑓(0) = 0,   𝑓′(0) = 1 + 𝐴1𝑓′′(0) + 𝐴2𝑓′′′(0),   𝜃(0) = 1, 𝜙(0) = 1   at 𝜂 = 0, 

𝑓′(𝜂) =  𝑓′′(𝜂) = 𝜃(𝜂) = 𝜙(𝜂) = 0 as 𝜂 → 0,          (15) 

where,  𝐴1 is the first-order velocity slip parameter with 0 < 𝐴1  =  𝐴√
𝑎

𝜈
  and 𝐴2  is the second-order velocity slip 

parameter with 0 > 𝐴2  =
𝐵𝑎

𝜈
 . Further, 𝑓, 𝜃 and 𝜙 are functions of  𝜂 and prime denotes derivatives with respect to 𝜂. 

𝛽 = 𝑎𝜆1  is Deborah number, 𝑀 =
𝜎𝐵0

2

𝜌𝑓𝑎
  is magnetic parameter called Hartmann number, 𝑁𝑟 =

16𝜎∗𝑇3
∞

3𝑘𝑘∗  is radiation 

parameter, 𝑁𝑏 =
𝜏𝐷𝐵(𝐶𝑤−𝐶∞)

𝜈
 is Brownian motion parameter, 𝑁𝑡 =

𝜏𝐷𝑇(𝑇𝑤−𝑇∞)

𝜈𝑇∞
 is thermophoresis parameter, 𝑃𝑟 =

𝜈

𝛼
  is 

Prandtl number,  𝛾 =
𝑘1𝐿𝑒

𝑎
 is chemical reaction parameter, and 𝐿𝑒 =

𝜈

𝐷𝐵
 is Lewis number. 

The skin friction coefficient (𝐶𝑓𝑥), local Nusselt number (𝑁𝑢𝑥) and Local Sherwood number (𝑆ℎ𝑥) are given by, 

𝐶𝑓𝑥 =
𝜏𝑤

𝜌𝑈𝑤
2 ,   𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞) 
 and 𝑆ℎ𝑥 =

𝑥𝑞𝑚

𝑘(𝐶𝑤−𝐶∞) 
     (16) 

where the shear stress along the stretching surface 𝜏𝑤, the surface heat flux 𝑞𝑤 and the surface mass flux 𝑞𝑚 are    

𝜏𝑤 =
𝜇

1+𝜆
[(

𝜕𝑢

𝜕𝑦
) + 𝜆1 (

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑢

𝜕2𝑣

𝜕𝑥2 + 𝑣
𝜕2𝑢

𝜕𝑦2)]
𝑦=0

, 

𝑞𝑤 = −𝑘 
𝜕𝑇

𝜕𝑦
+ (𝑞𝑟)𝑤 ,  𝑞𝑚 = −𝐷𝐵

𝜕𝐶

𝜕𝑦
 at  𝑦 = 0.        (17) 

Substituting the values of  𝜏𝑤 , 𝑞𝑤 and  𝑞𝑚  into the equation (16) we have 

√𝑅𝑒𝐶𝑓𝑥 = [
1

1+𝜆
(𝑓′′(0) + 𝛽(𝑓′(0)𝑓′′(0)) − 𝑓(0)𝑓′′′(0))], 

𝑁𝑢𝑥

√𝑅𝑒𝑥
= −(1 + 𝑁𝑟𝜃3

𝑤)𝜃′(0),
𝑆ℎ𝑥

√𝑅𝑒𝑥
= −𝜙′(0), (18) 

where 𝑅𝑒𝑥  =
𝑎𝑥2

𝜈
 is local Reynolds number.     
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2.1. Numerica method 

The system of non-linear ordinary differential equations (12) to (14) with boundary conditions (15) has been solved 
using Runge-Kutta-Fehlberg fourth-fifth order method along with Shooting technique. The method has the following 
steps: In the first step, the governing system of equations (12) to (14) are reduced to a system of eight simultaneous 
differential equations of first order by introducing new dependent variables. In this system of first order differential 
equations, four initial conditions are known and remaining missed initial conditions   are obtained with the help 
shooting technique. Afterward, a finite value for  𝜂∞ is chosen in a such a way that all the far field boundary conditions 
are satisfied asymptotically. Our bulk computations are considered with the value at 𝜂∞= 5, which is sufficient to achieve 
the far field boundary conditions asymptotically for all values of the parameters considered. After fixing finite value for 
𝜂∞, integration is carried out with the help of Runge-Kutta-Fehlberg-45 (RKF-45) method. Runge-Kutta-Fehlberg-45 
method has a procedure to determine if the proper step size ℎ is being used. At each step, two different approximations 
for the solution are made and compared. If the two answers are in close agreement, the approximation is accepted 
otherwise, the step size is reduced until to get the required accuracy. For the present problem, we took step size ∆𝜂 =
0.001, far field boundary conditions at 𝜂∞ = 5 and accuracy to the fifth decimal places. To have a check on the accuracy 
of the numerical procedure used, first test computations for 𝜃′(0) are carried out for viscous fluid for various values 
of 𝑃𝑟 and compared with the available published results of Goyal and Bhargava [27], Gorla and Sidawi [28], Nadeem 
and Hussain [29] and Wang [30] in Table – (1) and they are found to be in excellent agreement. 

3. Results and discussion 

A theoretical investigation of second order velocity slip boundary layer flow of Jeffrey nanofluid over a stretching sheet 
under the influence of nonlinear thermal radiation and non-uniform heat source/sink has been performed. The value 
of the Prandtl number for the base fluid is kept as 𝑃𝑟 = 10. The default values of the other parameters are mentioned 
in the description of the respected figures. In order to study the characteristics of velocity and temperature distribution 
for first order velocity slip parameter (𝐴1) and second order velocity slip parameter (𝐴2), radiation parameter (𝑁𝑟), 
temperature ratio parameter (𝜃𝑤), magnetic parameter (𝑀) graphs are platted and physical reasons behind the trend 
of the graphs are discussed. 

The effect of first order and second order velocity slip parameters on velocity and temperature profiles are 
demonstrated as in the figure (2) and (3). We can observe that the effect of increasing values of both first and second 
order velocity slip parameters reduces the thickness of momentum boundary layer and hence decrease the velocity. 
Therefore, increasing values of velocity slip parameters (𝐴1 and 𝐴2)decrease the boundary layer velocity, where as the 
temperature increases with increase in 𝐴1and 𝐴2. This must be due to the existence of slip velocity on the stretching 
surface. 

 

Figure 2 Velocity and temperature profile for various values of 𝐴1. 
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Figure 3 Velocity and temperature profile for various values of 𝑨𝟐. 

Figure (4) describes the effects of Deborah number (𝛽) on the velocity and temperature profiles. We can see that 
boundary layer thickness and the fluid velocity increases with increase in 𝛽. This is because; increase in 𝛽 decreases the 
resistance of fluid motion which thus causes a higher fluid movement at the neighborhood of the stretching surface. 
Figure (4) reveals that the larger values of Deborah number leads to a reduction in the temperature and thermal 
boundary layer thickness. It is due to the fact that Deborah number is directly proportional to relaxation time and larger 
values of Deborah number corresponds to the higher relaxation time. Such increase in relaxation time corresponds to 
the lower temperature and weaker thermal boundary layer thickness. We can also see that boost in 𝛽  causes the 
reduction in the concentration boundary layer. 

 

Figure 4 Velocity and temperature profile for various values of 𝜷. 

Influence of 𝜆  on velocity and temperature profile is highlighted in figure (5). It can be seen that an increase in 𝜆 
decreases the fluid velocity but enhances the temperature profile and it gives rise to the nanoparticle concentration 
field and associated boundary layer thickness. It is due to the fact that an increase in 𝜆 corresponds to decrease in 



International Journal of Science and Research Archive, 2023, 09(01), 608–626 

615 

retardation time but increase in the relaxation time and hence higher values of 𝜆 imply the domination of relaxation 
time over retardation time  due to which temperature and concentration profiles are enhanced. 

 

Figure 5 Velocity and temperature profile for various values of 𝝀. 

Figure (6) shows the effect of magnetic parameter (𝑀)  on dimensionless velocity and temperature distributions, 
respectively. The presence of a magnetic field in an electrically conducting fluid induces a force called Lorentz force, 
which opposes the flow. This resistive force tends to slow down the flow, so the effect of 𝑀 decreases the velocity and 
also cause increase in its temperature distributions. 

Figure (7) depicts the temperature profiles for several values of 𝐴∗, it can be seen that the thermal boundary layer 
generates the energy and this causes the temperature profiles increases with increase in (𝐴∗ > 0) and decreases with 
increase in (𝐴∗ < 0). 

 

Figure 6 Velocity and temperature profile for various values of 𝑴. 
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Figure 7 Temperature profile for various values of 𝑨∗. 

 

 

Figure 8 Temperature profile for various values of 𝑩∗. 

The effect of temperature dependent heat source/sink parameter (𝐵∗) on temperature profile was demonstrated in 
figure (8). This graph illustrates that energy is released for increasing values of  (𝐵∗ > 0) which causes the temperature 
to increase, where as energy is absorbed for decreasing values of (𝐵∗ < 0)  resulting the temperature to drop 
significantly within the boundary layer. 
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Figure 9 Temperature profile for various values of 𝜽𝒘 when 𝑷𝒓 = 𝟔. 𝟐. 

 

 

Figure 10 Temperature profile for various values of 𝜽𝒘 when 𝑷𝒓 = 𝟏𝟎. 

Figure (9) and (10) illustrates the effect of temperature ratio parameter (𝜃𝑤) on temperature profiles, when 𝑃𝑟 = 6.2 
and 𝑃𝑟 = 10 respectively. From these plots, one can notice that, an increase in temperature ratio parameter increases 
the thermal state of the fluid, and it results in increase of temperature profiles. The effect of radiation parameter on 
temperature is depicted as in figure (11). A critical observation shows that, the temperature profile increases with 
increase in 𝑁𝑟 . This is because  an increase in the radiation parameter provides more heat to fluid that causes an 
enhancement in the temperature and thermal boundary layer thickness. 
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Figure 11 Temperature profile for various values of 𝑵𝒓. 

 

Figure 12 Nanoparticle concentration profile for various values of 𝜸. 
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Figure 13 Temperature profile for various values of 𝑳𝒆. 

 

Figure 14 Nanoparticle concentration profile for various values of 𝑳𝒆. 

Effect of chemical reaction parameter (𝛾) on nanoparticle volume fraction profile is shown in figure (12) for the both 
negative and positive values of 𝛾 . It is observed that the nanoparticle volume fraction decreases for constructive 
chemical reaction parameter and increases for destructive chemical reaction parameter.  

Figure (13) and (14) displays the effect of Lewis number (𝐿𝑒) on temperature and concentration profiles. From these 
figures both the profiles decreases with increasing values of 𝐿𝑒. It is due to the fact that the larger values of Lewis 
number make the mass diffusivity smaller; therefore it decreases the concentration field. 

Temperature and nanoparticle volume fraction variation against different values of   𝑁𝑏  and 𝑁𝑡  are depicted 
respectively, as in figure (15), (16) and (17). We can see that the temperature profiles are increasing function of 𝑁𝑏, 
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whereas nanoparticle volume fraction is a decreasing one. This may be due to the fact that as Brownian motion 
parameter (𝑁𝑏) decreases the mass transfer of a nanofluid. Further, both temperature and nanoparticle volume fraction 
profiles increases for increasing values of 𝑁𝑡. The variation in Prandtl number (Pr) on 𝜃 (for 𝐴∗ = 𝐵∗ = 0.1) is shown in 
figure (18). The temperature field (𝜃) decreases when 𝑃𝑟 increases. It is obvious that, an increase in the values of 𝑃𝑟 
reduces the thermal diffusivity, therefore thermal boundary layer thickness is a decreasing function of 𝑃𝑟 . 

 

Figure 15 Temperature and Nanoparticle concentration profile for various values of 𝑵𝒃. 

 

Figure 16 Temperature profile for various values of 𝑵𝒕. 
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Figure 17 Nanoparticle concentration profile for various values of 𝑵𝒕. 

 

Figure 18 Temperature profile for various values of 𝑷𝒓 when 𝑨∗ = 𝑩∗ = 𝟎. 𝟏. 

The numerical results recorded in Table – (2) illustrates the variation of skin friction co-efficient and Nusselt number 
with respect to various flow controlling parameters. As expected, both first and second order velocity slip parameters 
effect is to reduce the friction at the solid-fluid interface, and thus reduces the skin friction coefficient. Similar behaviour 
is also observed in the case of 𝜆, i.e., in the presence velocity slip,  increase in 𝜆 results decrease of both skin friction 
coefficient and local Nusselt number. But quite opposite behaviour is observed in the case of 𝛽 and 𝑀. 
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The effects of various pertinent parameters on local Nusselt number and local Sherwood number are discussed 
numerically through Table – (3). We can see that 𝐴∗, 𝐵∗, 𝛾, 𝐿𝑒 and 𝑃𝑟 shows favourable effect on coefficient of 𝜙′(0), 
whereas effect of 𝜃𝑤 , 𝑁𝑏 and 𝑁𝑡 on local Nusselt number is negligible. We can also observe that both 𝜃𝑤 and 𝑃𝑟 show 
positive effect on local Nusselt number. This is due to the fact that a higher Prandtl number reduces the thermal 
boundary layer thickness and increases the surface heat transfer rate. Also high Prandtl number implies more viscous 
fluid which tends to retard the motion. Similarly, 𝐴∗,  𝐵∗, 𝜃𝑤 shows negative effect and chemical parameter has no effect 
on local Nusselt number.  

Table 1 Comparison table for −𝜽′(𝟎) (viscous case) with     𝜷 = 𝝀 = 𝑨𝟏 = 𝑨𝟐 = 𝑵𝒓 = 𝑨∗ = 𝑩∗ = 𝜸 = 𝟎, 𝑵𝒃 = 𝑵𝒕 =
𝟏𝟎−𝟔 

Pr Nadeem and 
Hussain (HAM 
method) (2013) 

Gorla and 
Sidawi (1994) 

Goyal and Bhargava 

(FEM Method) (2014) 

Wang 

(1989)  

Present (RKF45 
Method) 

0.2 0.169 0.1691 0.1691 0.1691 0.170259788 

0.7 0.454 0.5349 0.4539 0.4539 0.454447258 

2 0.911 0.9114 0.9113 0.9114 0.911352755 

7  1.8905 1.8954 1.8954 1.895400395 

20  3.3539 3.3539 3.3539 3.353901838 

 

Table 2 Values of Skin friction coefficient and Nusselt number for different values of the parameters when 𝑷𝒓 =
𝟔. 𝟐, 𝜽𝒘 = 𝟏. 𝟐, 𝑵𝒓 = 𝟎. 𝟓, 𝑨∗ = 𝑩∗ = 𝟎. 𝟓. 

𝑨𝟏 𝑨𝟐 𝜷 𝝀 𝑴 −√𝑹𝒆𝑪𝒇𝒙 −
𝑵𝒖𝒙

√𝑹𝒆𝒙

 

0     0.3650 0.4217 

1     0.2380 0.1771 

1.5     0.2020 0.0403 

 0    0.5400 0.6069 

 -0.5    0.3690 0.4266 

 -1    0.2880 0.2973 

  0.2   0.2880 0.2973 

  0.4   0.3110 0.3360 

  0.6   0.3350 0.3702 

   0  0.4320 0.4736 

   0.3  0.3330 0.3687 

   0.6  0.2700 0.2598 

    0 0.2880 0.5004 

    0.1 0.2890 0.4375 

    0.2 0.2890 0.3708 
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Table 3 Values of Nusselt and Sherwood number for different values of the parameters when 𝑨𝟏 = 𝟎. 𝟓, 𝑨𝟐 = −𝟏, 𝜷 =
𝟎. 𝟐, 𝝀 = 𝟎. 𝟓, 𝑴 = 𝟎. 𝟑. 

𝑨∗ 𝑩∗ 𝑵𝒓 𝜽𝒘 𝑵𝒃 𝑵𝒕 𝜸 𝑳𝒆 𝑷𝒓 −
𝑺𝒉𝒙

√𝑹𝒆𝒙

 −
𝑵𝒖𝒙

√𝑹𝒆𝒙

 

-0.5         1.3796 0.5296 

0         1.4154 0.4145 

0.5         1.4521 0.2973 

 -0.5        1.2618 0.9041 

 0        1.3441 0.6537 

 0.5        1.4521 0.2973 

  0.5       1.4502 0.2973 

  1       1.4521 0.3246 

  1.5       1.4558 0.2691 

   1.2      1.4521 0.2973 

   1.4      1.4520 0.2642 

   1.6      1.4510 0.1956 

    0.1     1.4540 0.2973 

    0.2     1.4521 0.2066 

    0.3     1.4520 0.1350 

     0    1.4250 0.3916 

     0.1    1.4521 0.2973 

     0.2    1.5174 0.2113 

      -0.2   1.3169 0.2971 

      -0.1   1.3639 0.2970 

      0   1.4089 0.2972 

      0.1   1.4521 0.2973 

      0.2   1.4936 0.2975 

       5  0.9829 0.3001 

       10  1.4521 0.3000 

       20  2.1209 0.2973 

        4.2 1.3598 0.5251 

        5.2 1.3471 0.6073 

        6.2 1.3380 0.6705 

Nomenclature  

 𝑎 stretching rate 

 𝐴∗ space dependent heat source/sink  

 𝐴1 the first-order velocity slip parameter 

 𝐴2  the second-order velocity slip parameter 
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 𝐵∗ temperature dependent heat source/sink 

 𝐵0   magnetic field strength 

 𝐶  volumetric volume expansion coefficient 

 𝐶𝑓𝑥 local skin friction coefficient   

 𝐷𝐵    Brownian diffusion coefficient 

 𝐷𝑇    thermophoresis diffusion coefficient 

 𝑘1 chemical reaction coefficient 

 𝑘  thermal conductivity 

 𝑘∗ Rosseland mean absorption coefficient  

 𝐿𝑒  Lewis number 

 𝑀  magnetic parameter  

 𝑁𝑏  Brownian motion parameter 

 𝑁𝑟  radiation parameter  

 𝑁𝑡  thermophoresis parameter  

 𝑁𝑢𝑥 local Nusselt number 

 𝑃𝑟  Prandtl number 

 𝑅𝑒𝑥 local Reynolds number 

 𝑆ℎ𝑥 local Sherwood number 

 𝑇  temperature of the nanofluid near wall  

 𝑇∞ fluid temperature far away from the sheet 

 𝑇𝑤 uniform wall temperature  

 𝑈𝑤 stretching velocity  

 𝑢, 𝑣 velocity components along the 𝑥 and 𝑦 axes 

Greek symbols 

 𝜆,𝜆1  ratio of relaxation and retardation times and the relaxation time 

 𝜌𝑓  density of the fluid 

 𝜌𝑝 nanoparticles density 

 𝜃  dimensionless temperature variable 

 𝜙  nanoparticle volume fraction 

 𝛼  thermal diffusivity  

 𝜂  similarity variable 

 𝜈  kinematic viscosity  

 𝜎∗ Stefan-Boltzmann constant  

 (𝜌𝑐)𝑓 heat capacities of nanofluid 

 (𝜌𝑐)𝑝 effective heat capacity of the nanoparticles 

 𝛽  Deborah number 

 𝛾   chemical reaction parameter 

Subscripts  

 ∞ infinity  

 𝑤  sheet surface 

4. Conclusions 

An analysis to study the effect of nonlinear thermal radiation on second order slip flow and heat transfer of Jeffrey 
nanofluid over a stretching sheet with non-uniform heat source/sink is presented. Numerical results for velocity 
profiles, surface heat transfer rate and mass transfer rate have been obtained for parametric variations of various ranges 
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of slip boundary condition and for different values of flow pertinent parameters. The main outcomes of the problem are 
summarized as follow;  

 Both first and second order velocity slip parameter reduces the thickness of momentum boundary layer and 

hence decrease the velocity. 

 Boundary layer thickness and the fluid velocity increases with increase in Deborah number. 

 An increase in Lewis and Prandtl numbers shows a decrease in nanoparticle concentration. 

 Larger values of magnetic parameter lead to an enhancement in the temperature and nanoparticle 

concentration. 

 An increase in 𝜆 and 𝜃𝑤 enhances the temperature profile. 

 Nanoparticle volume fraction decreases for constructive chemical reaction parameter and increases for 

destructive chemical reaction parameter. 

 Both temperature and nanoparticle volume fraction increase for increasing values of 𝑁𝑟. 

 𝑁𝑟enhances the coefficient of Nusselt number, but the parameters  𝜃𝑤 , 𝑁𝑏, 𝑁𝑡 decreases – 𝜃′(0). 
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