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Abstract 

Hepatitis B and C viruses can lead to serious complications such as hepatic fibrosis, liver cirrhosis, and hepatocellular 
carcinoma (HCC) and are therefore responsible for a significant portion of liver cancer cases worldwide, with over 1.3 
million deaths annually. The mechanisms by which hepatitis viruses contribute to HCC include DNA integration into the 
host genome, metabolic reprogramming, induction of the cellular stress response pathway, and interference with 
tumour suppressors. HBV is a DNA virus from the Hepadnaviridae family, and HCV is an RNA virus from the Flaviviridae 
family. Both viruses are transmitted through contact with infected bodily fluids, such as blood or sexual fluids. It is 
important to get tested for hepatitis B and C and to seek treatment as early as possible to prevent the progression to 
liver cancer. While there is a vaccine available for Hepatitis B, there is currently no vaccine for Hepatitis C. But some 
natural medicines have demonstrated antiviral activity against the hepatitis B and C viruses. Therefore, it is important 
to explore natural alternatives for the treatment of this disease. This review aims to summarise the pathogenesis of 
hepatitis B and C and their link to hepatocellular carcinoma, as well as to highlight natural compounds with the potential 
to treat hepatitis through various mechanisms at different stages of infection. These natural compounds may offer an 
alternative to chemical-based medications in the treatment and control of hepatitis by inhibiting or disrupting the entry, 
activity, or replication of the virus within the host.  

Keywords: Hepatitis B; Hepatitis C; Human Liver Cancer; Hepatitis B virus associated Hepatocellular carcinoma; 
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Graphical Abstract 

 

Plant-based compounds and their mechanism of action against hepatitis B and C viruses. 

1. Introduction 

Infections with HBV and HCV are responsible for a significant portion of the liver disorders that are seen around the 
world. As a result of the fact that the two hepatotropic viruses share the same mode of transmission, co-infection with 
the two viruses is extremely common. This is especially true in areas of the world where HBV infection is more common, 
as well as in populations that are at a high risk for parenteral infection [1]. 

1.1. Hepatitis B Virus 

Hepatitis B virus (HBV) is a member of the Hepadnaviridae family of viruses that infects exclusively the hepatocytes 
(liver cells) of humans and some non-human primates. It is found in several different forms in the blood, with the 
infectious form being known as the Dane particle. The Dane particle is a small, enveloped virus with a partially double-
stranded DNA genome of approximately 3.2 kilobases in size and a diameter of 42nm, that is linked to a polymerase and 
surrounded by a nucleocapsid. It also contains three envelope proteins called the large (L), middle (M), and small (S) 
surface proteins, which contain domains essential for attachment to hepatocytes (Fig.1) [2]. The C-terminal S domain is 
common to all three envelope proteins, while the M protein also contains an extra N-terminal preS2 domain and the L 
protein contains a preS1 domain in addition to the preS2 and S domains [3]. In addition to the Dane particle, there are 
two other forms of HBV that are secreted in large amounts and known as subviral particles (SVPs) [4]. These SVPs 
contain only envelope proteins and are non-infectious. The SVPs can be either spherical or filamentous in shape, with 
the spherical SVPs being composed of S (90%) and M proteins (10%), and the filamentous SVPs containing S (80%), M, 
and L proteins (10% each) [5]. The lipid composition of SVPs has been determined to consist mainly of 
phosphatidylcholine, cholesteryl ester, cholesterol, and triglycerides, but the lipid composition of Dane particles has not 
yet been determined [6]. The relevance of SVPs in the life cycle of HBV is unclear, but it has been suggested that they 
may act as a decoy for the immune system, protecting the Dane particle from the neutralizing humoral response [7].  

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1415845/
https://pubmed.ncbi.nlm.nih.gov/28042609/
https://pubmed.ncbi.nlm.nih.gov/17206752/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371811/
https://pubmed.ncbi.nlm.nih.gov/19673892/
https://pubmed.ncbi.nlm.nih.gov/7085648/
https://pubmed.ncbi.nlm.nih.gov/17206755/
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Figure 1 Schematic representation of Hepatitis B  

1.1.1. Virus interaction with Hepatocytes 

The hepatitis B virus (HBV) infects the liver and causes chronic liver disease by binding to liver cells via a protein called 
sodium taurocholate co-transporting polypeptide (NTCP) and then entering the cell to replicate (Fig.2). The process of 
HBV entering a cell may involve the interaction with multiple receptors and may be a complex, multi-step process that 
involves endocytosis, a process by which the cell takes in molecules from outside the cell. It is thought that additional 
host factors, or proteins produced by the host cell, are required for susceptibility to HBV infection[8]. Some host factors 
that may play a role in HBV infection include the epidermal growth factor receptor (EGFR) and the protein E-cadherin 
[9]. The mechanism by which HBV gains access to the cell once it has interacted with its receptor and coreceptor is not 
fully understood, but some studies have suggested that HBV enters cells through a process called Caveolin-1-mediated 
endocytosis, while others have found evidence for the involvement of Clathrin-mediated endocytosis (CME) [10]. 
Inhibition of CME has been shown to decrease HBV infection in some studies [11, 12, 13]. Further understanding of the 
mechanisms involved in HBV entry into cells could lead to the development of new inhibitors to eliminate the virus from 
infected liver cells. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3974512/
https://www.pnas.org/doi/abs/10.1073/pnas.1811064116
https://journals.asm.org/doi/full/10.1128/JVI.01207-09
https://journals.asm.org/doi/full/10.1128/JVI.00873-12
https://journals.asm.org/doi/full/10.1128/JVI.00873-12
https://onlinelibrary.wiley.com/doi/full/10.1111/cmi.13205
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Figure 2 Schematic representation of Hepatitis B viral pathogenesis/ Hepatitis B Virus Pathogenesis: A Schematic 
Overview 

1.1.2. Understanding the progression of Hepatocellular carcinoma by Hepatitis B virus 

Hepatitis B virus (HBV) infects the liver and can range from being inactive to a more or less progressive form of hepatitis 
that can lead to cirrhosis and liver cancer (hepatocellular carcinoma, or HCC) [14, 15, 16]. There are two types of chronic 
hepatitis B: Hepatitis B envelope Antigen (HBeAg)-positive, which is due to wild-type HBV and represents the early 
phase of chronic HBV infection, and HBeAg-negative, which is caused by a naturally occurring HBV variant with 
mutations in certain regions of the genome and represents a late phase of the infection [17]. HBeAg-negative chronic 
hepatitis B is generally associated with more severe liver disease and a lower response rate to antiviral therapy [17, 18 
,19]. The risk of developing cirrhosis within 5 years of being diagnosed with chronic hepatitis B ranges from 8-20%, and 
the risk of developing liver failure, or HCC, is also significant [20]. HCC is one of the most common cancers worldwide, 
with about 75% of cases being related to chronic HBV infection [21]. The incidence of HCC varies geographically and is 
higher in people with advanced liver disease. The only way to improve survival after a diagnosis of HCC is through early 
detection and treatment such as surgical resection, liver transplantation, or percutaneous ablation. Universal 
vaccination and new therapeutic agents may help prevent the development of cirrhosis and HCC [22].  

1.1.3. Current Treatment of Chronic Hepatitis B 

There are currently seven drugs available for the treatment of chronic hepatitis B (CHB), including Interferon alpha, 
Lamivudine, Adefovir, pegylated interferon alpha-2a, Entecavir, Telbivudine, and Tenofovir [14, 15, 23]. These drugs 
have varying levels of effectiveness in suppressing the hepatitis B virus and improving clinical outcomes, and can be 
limited by factors such as poor tolerability, the development of resistance, and the presence of co-infections with other 
viruses (Table1).  

 

 

 

https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.21627
http://www.drsarma.in/files/medicine/Jaundice%20Hepatitis/AASLD%20Hep%20B%20Guidelines.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0168827802000041
https://www.sciencedirect.com/science/article/abs/pii/S0270913901800434
https://www.sciencedirect.com/science/article/abs/pii/S0270913901800434
https://www.sciencedirect.com/science/article/abs/pii/S0270913901800434
https://www.sciencedirect.com/science/article/abs/pii/S016882780700637X
https://www.sciencedirect.com/science/article/abs/pii/S016882780700637X
https://www.sciencedirect.com/science/article/abs/pii/S0016508504015938
https://www.journal-of-hepatology.eu/article/S0168-8278(01)00130-1/fulltext
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2005-915649
https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.21627
http://www.drsarma.in/files/medicine/Jaundice%20Hepatitis/AASLD%20Hep%20B%20Guidelines.pdf
http://www.drsarma.in/files/medicine/Jaundice%20Hepatitis/AASLD%20Hep%20B%20Guidelines.pdf
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Table 1 Overview of Antiviral drugs for treatment of Hepatitis B virus (HBV) infection  

Drug Description Effectiveness Resistance profile Reference 

Interferon-∝ Antiviral, 
antiproliferative, and 
immunomodulatory 
effects  

Superior to placebo in 
undetectability of HBV DNA 
and HBeAg loss  

Poor tolerability  [24, 25] 

Lamivudine Oral drug Poor resistance profile   [26, 27]  

Adefovir Nucleotide analogue Improved resistance profile 
compared to lamivudine but 
not more effective than 
lamivudine in viral 
suppression 

Better resistance profile 
than lamivudine  

[28]  

Entecavir  Potent anti-HBV agent  High rates of undetectable 
HBV DNA and low HBeAg 
seroconversion rates 

Low rate of resistance in 
naïve patients, high 
genetic barrier to 
resistance in 
lamivudine- resistance 
patients 

[29, 30]  

Telbivudine  Oral drug  High rates of undetachable 
HBV DNA and low HBeAg 
seroconversion rates 

Low rate of resistance in 
naïve patients, moderate 
rate of resistance in 
lamivudine- resistance 
patients 

[31,32]  

Tenofovir Nucleotide analogue  High rates of undetachable 
HBV DNA and low HBeAg 
seroconversion rates 

Low rate of resistance in 
naïve patients, moderate 
rate of resistance in 
lamivudine- resistance 
patients 

[33]  

1.2. Hepatitis C virus 

Table 2 Possible Multifunctional Roles of HCV Gene Products 

Gene product Function Relevance to 
malignant formation 

Reference 

Core May have immunosuppressive activities 
through interaction with pathways and 
C1qR. 

Yes  [34] [39] 

E2 Interferes with interferon actions; Interacts 
with cell surface marker CD81.  

Yes  [40]  

NS3 Viral protease; activates various signal 
transduction pathways  

Yes  [35] [41] 

NS5A Implicated in diverse cellular functions 
including blocking interferon responses. 

Yes [42][43][44] 

[45][46][47] [48] 

P7, NS2, NS4A, 
NS4B 

Not fully defined  Unknown  [49] [50] 

Note: The true biological relevance of these observations is not yet established, especially in regards to the development of hepatocellular 
carcinoma (HCC). 

Hepatitis C virus (HCV) is a type of RNA virus that belongs to the Flaviviridae family and is classified in the genus 
Hepacivirus. Its genome is approximately 10 kilobases in length and encodes 10 viral gene products that are divided 

https://www.acpjournals.org/doi/abs/10.7326/0003-4819-119-4-199308150-00011
https://www.nejm.org/doi/full/10.1056/nejm199605303342202
https://www.sciencedirect.com/science/article/abs/pii/S0016508500976194
https://pubmed.ncbi.nlm.nih.gov/18304680/
https://www.sciencedirect.com/science/article/abs/pii/S0016508506020804
https://cir.nii.ac.jp/crid/1573105975716649728
https://www.sciencedirect.com/science/article/abs/pii/S0016508506007359
https://www.nejm.org/doi/full/10.1056/NEJMoa066422
https://www.nejm.org/doi/full/10.1056/NEJMoa066422
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1478-3231.2008.01947.x
https://pubmed.ncbi.nlm.nih.gov/10592658/
https://pubmed.ncbi.nlm.nih.gov/11086025/
https://pubmed.ncbi.nlm.nih.gov/11781364/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC189112/
https://pubmed.ncbi.nlm.nih.gov/10365161/
https://pubmed.ncbi.nlm.nih.gov/9143277/
https://pubmed.ncbi.nlm.nih.gov/9143277/
https://pubmed.ncbi.nlm.nih.gov/11159892/
https://pubmed.ncbi.nlm.nih.gov/12433279/
https://pubmed.ncbi.nlm.nih.gov/12433279/
https://pubmed.ncbi.nlm.nih.gov/9387155/
https://pubmed.ncbi.nlm.nih.gov/12101418/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153960/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC371042/
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into structural and non-structural genes (Fig.3). Some of the proposed functions of HCV gene products may be relevant 
to the development of cancer, such as the core gene product's interaction with pathways related to apoptosis, signal 
transduction, transcriptional activation, and transformation [34]. The non-structural proteins of HCV may also play a 
role in sustaining viral persistence and promoting carcinogenesis, such as the NS3 protein's activation of various signal 
transduction pathways and the NS5A protein's potential role in blocking interferon responses [35, 36, 37, 38]. However, 
the true biological relevance of these observations is not yet established, especially in regards to the development of 
hepatocellular carcinoma (HCC) (Table2). 

 

Figure 3 Schematic representation of Hepatitis C 

1.2.1. Molecular Mechanisms of HCV pathogenesis 

The molecular mechanisms of HCV pathogenesis involve a complex interplay between the virus and the host, with the 
virus exploiting various host pathways and mechanisms to establish infection and persist in the liver (Fig.4.). HCV has 
been linked to the production of reactive oxygen species (ROS), which can contribute to liver injury and oxidative stress 
in infected individuals. HCV gene products such as the core and NS5A proteins have been shown to induce ROS 
production through various mechanisms, including the release of cytochrome C by the core protein and the release of 
calcium by the NS5A protein [51, 43]. Chronic inflammation caused by HCV infection can also contribute to ROS 
production. The presence of ROS and the resulting oxidative stress can create a pro-carcinogenic environment that leads 
to chromosomal damage and increased mutation rates in infected cells. In particular, HCV infection has been associated 
with mutations in p53, beta-catenin, and other proto-oncogenes and tumour suppressor genes in HCC [52, 53]. A study 
also found that HCV infection can cause a "hypermutator" phenotype in lymphoma cells, with increased mutational 
frequencies in certain genes, double-stranded chromosomal breaks, and the activation of error-prone DNA polymerases 
and activation-induced cytidine deaminase. These findings suggest that hypermutational events may be a mechanism 
of carcinogenesis during HCV infection[54, 55, 56]. 

https://pubmed.ncbi.nlm.nih.gov/10592658/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC189112/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC189112/
https://pubmed.ncbi.nlm.nih.gov/10631105/
https://pubmed.ncbi.nlm.nih.gov/10631105/
https://pubmed.ncbi.nlm.nih.gov/11832451/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55498/
https://pubmed.ncbi.nlm.nih.gov/10763957/
https://pubmed.ncbi.nlm.nih.gov/10595907/
https://pubmed.ncbi.nlm.nih.gov/11023531/
https://www.acpjournals.org/doi/abs/10.7326/0003-4819-137-7-200210010-00008
https://pubmed.ncbi.nlm.nih.gov/14999097/


International Journal of Science and Research Archive, 2023, 08(01), 131–149 

137 

 

Figure 4 Schematic representation of Hepatitis C viral pathogenesis/ Hepatitis C Virus Pathogenesis: A Schematic 
Overview 

1.2.2. Understanding the Progression of Chronic Hepatitis C Infection 

Chronic hepatitis C (HCV) is a viral infection that can cause liver scarring (fibrosis). The progression of fibrosis is a key 
factor in determining the need for treatment and the overall outlook of the infection [57, 58, 59]. A number of factors, 
including inflammation and stellate cell activation, contribute to the development of fibrosis. Risk factors for fibrosis 
progression include age at infection, male gender, heavy alcohol use, and being immunocompromised. Obesity, diabetes, 
and hepatic steatosis (excess fat accumulation in the liver) may also affect the progression of fibrosis in HCV-infected 
individuals [60, 61] . There is currently no reliable test to predict the rate of fibrosis progression in a specific case. 
Normal ALT levels do not necessarily mean a patient is not at risk for fibrosis worsening, but elevated ALT levels are a 
risk factor[62]. The most accurate way to assess fibrosis progression is to repeat a liver biopsy 3-5 years after the initial 
biopsy. However, there is a need for improvement and validation in the use of fibrosis serum markers. 

1.2.3. Current Treatment of Hepatitis C      

Chronic hepatitis C (HCV) is currently treated with a combination of pegylated interferon and ribavirin, which has a 
success rate of around 50% in achieving sustained virologic response (SVR) [63,64,65,66,67]. However, this treatment 
has significant side effects and is not well tolerated by many patients. Researchers are currently developing enzyme 
inhibitors, such as protease and polymerase inhibitors, which show promise in combination with pegylated interferon 
and ribavirin[68]. It is likely that interferon-based therapy and ribavirin will remain the main treatment for HCV in the 
coming years, but the use of specifically targeted antiviral therapy drugs could improve SVR rates and eventually lead 

https://pubmed.ncbi.nlm.nih.gov/12407576/
https://pubmed.ncbi.nlm.nih.gov/12407573/
https://pubmed.ncbi.nlm.nih.gov/9121257/
https://www.sciencedirect.com/science/article/abs/pii/S0270913901459015
https://www.sciencedirect.com/science/article/abs/pii/S0016508507020239
https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1053/jhep.2001.28458
https://www.sciencedirect.com/science/article/abs/pii/S0016508507003940
https://www.sciencedirect.com/science/article/abs/pii/S0016508507003940
https://cir.nii.ac.jp/crid/1570854175902662400
https://cir.nii.ac.jp/crid/1570854175902662400
https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.22321
https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.22357
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to the use of interferon- and ribavirin-sparing regimens[69,70]. Many natural compounds derived from plants have 
been shown to have antiviral activity and have been studied as potential sources for new drugs. Approximately 200 
antiviral agents have been developed in the past 50 years, with around 40% being vaccines and the rest being natural 
or semi-synthetic compounds inspired by nature. These compounds, including flavonoids, polyphenols, alkaloids, 
stilbenoids, and terpenes, have been shown to prevent the adhesion, penetration, duplication, or replication of viruses. 
Some of these compounds have previously been shown to be effective against viruses that are similar to HCV. 

Natural products and synthetic therapeutic chemicals can work together to produce potent and effective medicines. 
This theory is supported by the existing research on the development of new drugs. This strategy has the potential to 
serve as the foundation for the development of therapeutic natural products that are designed for consumption by 
humans. Furthermore, the treatment of Hepatitis B and Hepatitis C virus infections, which can lead to liver carcinoma, 
should consider the use of such plant-based natural products exhibiting elevated antiviral activity. In this context, the 
current review discusses certain classes of natural compounds that have previously been reported to exhibit antiviral 
activity against similar viruses. 

2. Search methodology  

A thorough literature search was conducted for retrieving the studies published until September 2021 in the following 
databases: PubMed, Science Direct & Google Scholar. Inclusion and exclusion criteria were used to screen out 96 
relevant papers. The papers included extensive data on several known and novel natural compounds studied for 
Hepatitis B & C. Table 3 provides a concise summary of each of these papers, as well as the mechanism of action of the 
natural inhibitors that target viral proteins. The papers identified focused on bioactive plant-derived compounds 
derived from natural sources and their impact on various stages of viral replication, with a preference for compounds 
with low toxicity and the potential for multi-site inhibition. 

3. Natural plant derived inhibitors targeting Hepatitis B and C viral proteins during their replication 

In the section that follows, natural products with demonstrated anti-HBV (hepatitis B virus) and anti-HCV (Hepatitis C 
virus) activities will be discussed, with a particular focus on those that utilize mechanisms that differ from those of 
currently approved drugs. The aim is to explore the potential of these natural products as alternative or complementary 
treatments for HBV and HCV infections, and to highlight any unique or novel modes of action that they may possess. 
Given the significant burden of HBV and HCV on global health, the identification and characterization of these natural 
products may provide valuable insights for the development of new and more effective treatments for these viral 
infections. 

Table 3 List of the natural compounds with anti-Hep B and anti-Hep C activities along with their mechanisms of action. 

S.No Compound  Plant source Virus Target protein Mechanism of 
action 

IC50/EC50 Reference 

1. Rosmarinic acid 
(phenolic 
compound) 

Lamiaceae HBV ε-polymerase Inhibits 
replication by 
binding to ε-
polymerase 

NR [73]  

2. Methanolic 
extract 

Hybanthus 
enneaspermus 

HBV Surface antigen Entry, 
replication, 
and 
maturation of 
HBV particles 
are all 
inhibited. 

[74,75] 
 
 3. Methanolic 

extract 
Terminalia 
bellerica 

HBV DNA 
polymerase 

4. Methanolic 
extract 

Enicostemma 
axillare 

HBV DNA 
polymerase 

5. Crude extract Phyllanthus 
amarus 

HBV DNA 
polymerase 

6. Caudatin  Cynanchum 
auriculatum 

HBV anti-HBV action 
by interfering 
HBV enhancers 
and promoters 

Inhibitory 
activity 
against HBsAg 
secretion and 

142.67 
μmol/L 

[76, 77] 

https://gut.bmj.com/content/57/4/516.short
https://gut.bmj.com/content/57/4/516.short
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5962091/
https://www.mdpi.com/1999-4915/13/5/828
https://www.mdpi.com/1999-4915/13/5/828
https://pubmed.ncbi.nlm.nih.gov/22687441/
https://www.wjgnet.com/1007-9327/full/v22/i1/188.htm
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HBV DNA 
replication  

7.  Helioxanthin Taiwania 
cryptomerioides 

HBV HBV mRNAs 
transcription, 
or in a post-
transcriptional 
manner 

To inhibit the 
HBV RNA and 
the viral 
protein 
expression 

0.1 
±0.2mM 
32 ±1.4 
mM  

[78, 79] 

8. Curcumin Rhizome 
of Curcuma 
longa L. 

HBV gluconeogenesi
s gene 
coactivator 
PGC-1α 

Inhibits HBV 
replication in 
part by 
preventing the 
acetylation of 
histones 
bound to 
cccDNA. 

NA [80, 81, 
82] 

9. Asiaticoside Hydrocotyle 
sibthorpioides 

HBV core, S1, S2, and 
X gene 
promoter 
activities 

Reduced viral 
DNA 
transcription 
and 
replication 

23.5 
μmol/L 

[83]  

10. Phytoconstitue
nts extract 

Gymnema 
sylvestre R.Br. 

HBV Surface Antigen Inhibits HBsAg 
and HBV DNA 
polymerase 
activity 

NR [84]  

11. LPRP-Et-97543 Liriope 
platyphylla roots 

HBV Entry of target 
protein 

Controls gene 
expression 
and DNA 
replication 

NR [85]  

12. C-
boivinopyranos
yl flavones 
(luteolin-6-C-ß-
d-
boivinopyranos
yl-3’-O-ß-D-
glucopyranosid
e and 
chrysoeriol-6-C-
ß-D-
boivinopyranos
yl-4’-O-ß-D-
glucopyranosid
e) extracts 

Alternanthera 
philoxeroides 

HBV Surface Antigen Reduces the 
amount of 
HBsAg that is 
secreted by 
HepG2.15 

NR [86]  

13. Dephinidin 
 

Anthocyanidin 
abundant in 
Vaccinium 
corymbosum 
 

HCV E1 and E2 
glyco-proteins 

Effects on 
virus-host 
interaction via 
action on E1 
and E2 
glycoproteins, 
which results 
in 
conformationa
l changes in 
viral particles. 

EC50 - 3.7 
+ 0.8 μM 
 

[87]  

14. Mangosteen 
 

Garcinia 
mangostana L 
 

HCV NS5b 
 

Reduces HCV 
protein and 
RNA levels in 
1b & 2a 

EC50 –  
1b- 5.1 
μg/ml 

[88]  

https://pubmed.ncbi.nlm.nih.gov/12234098/
https://journals.sagepub.com/doi/10.1177/095632020501600305
https://pubmed.ncbi.nlm.nih.gov/20434445/
https://pubmed.ncbi.nlm.nih.gov/19409970/
https://www.wjgnet.com/1007-9327/full/v23/i34/6252.htm
https://www.sciencedirect.com/science/article/abs/pii/S0378874113006429?via%3Dihub
https://www.researchgate.net/profile/Subhashini-Athikayala-2/publication/356785717_MSSubashini_and_PRajendran/links/61ac4e5fca2d401f27c6bb63/MSSubashini-and-PRajendran.pdf
https://www.sciencedirect.com/science/article/pii/S0168170214002810
https://www.mdpi.com/131440
https://journals.asm.org/doi/full/10.1128/JVI.01473-15
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infectious 
replicon 
systems. 

2a- 3.8 
μg/ml 
 

15. Epigallocatechi
n-3-gallate 
(EGCG) 

Camellia sinensis 
 

HCV E1 and E2 
glyco-proteins 
 

EGCG's direct 
action on E1, 
E2 envelope 
glycoprotein 
alters the viral 
envelope 
structure 
without 
destroying it 
and blocks 
HCV cell 
binding. 
Blocks cell-to-
cell 
communicatio
n 

IC50- 5-21 
μM 
 

[89, 90, 91, 
92, 93] 

16. Gallic acid 
 

Limonium 
sinense 
 

HCV NS’s (NS 5A) Inhibits entry 
and 
replication, 
inhibits HCV 
protease 
function, and 
downregulates 
HCV-RNA. 

 [94, 95] 

17. Apigenin 
 

Petroselinum 
crispum OR 
flowers of 
chamomile 
Eclipta alba 
 

HCV NS5B 
 

Has an 
inhibitory 
effect on the 
development 
and 
replication of 
HCV viral 
particles 
containing 
miR122 
(microRNA 
122). 
HCV 
replication can 
be suppressed 
by blocking the 
RNA-
dependent 
RNA 
polymerase, 
NS5B, in vitro. 

IC50 - 4.3-
7.9 μM 
 

[96, 97, 
100, 101] 

18. Lucidone Lindera 
erythrocarpa 

HCV NS3/4A  
 

Increases IFN 
response and 
blocks NS3/4A 
protease by 
upregulating 
HO-1. 

IC50 - 1.1 
μM 
 

[102]  

19. Vitisin B 
 

Vitis vinifera 
 

HCV NS3 
 

Inhibitor of 
HCV 
replication 
that targets 
NS3 helicase 

IC50 - 
0.006 μM 
or 6nM 

[103]  
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20. Saikosaponin 
B2 

Bupleurum kaoi HCV E2 Blocks viral 
entry by 
neutralizing 
the viral 
particles 

16.13 + 
2.41 μM 

 
[104]  
 

21. Honokiol Magnolia 
officinalis 

HCV Components of 
replication 
complex, NS3, 
NS5A and 
NS5B, were 
downregulated 

Have multiple 
effects on HCV 
infection, 
inhibiting 
entry, 
translation 
and 
replication 

(LD50/ 
EC90 = 5.4 

[105]  

22. Naringenin Grapefruit 
flavonoid 

HCV Against NS2 
protease 

Inhibits HCV 
assembly, as it 
reduces the 
buildup of 
infectious 
particles 
within cells. 

109 μM [106]  

3.1. Natural compounds targeting viral proteins associated with Hepatitis B for therapeutic intervention 

As summarised in the Table.3. Rosmarinic acid is a natural compound that is found in abundance in various herbs 
belonging to the Lamiaceae family, such as spearmint, sage, peppermint, and perilla. It is commonly used as a dietary 
supplement and in Chinese herbal medicine. This compound has been shown to inhibit the binding of ε-Pol without 
affecting the binding of dsRNA-RIG-I, the helicase activity of RIG-I, or the binding of ε-ISG20 [71, 72]. Therefore, it is 
believed that rosmarinic acid does not interfere with the host's antiviral immune response. In vitro studies have also 
shown that rosmarinic acid treatment strongly abolishes ε-Pol binding, and it has been demonstrated to suppress HBV 
replication in cells [73].  

Inhibitors of viral entry and fusion are receiving increasing attention for HBV treatment due to the highly selective 
tropism of the virus. Methanolic extracts of Hybanthus enneaspermus have been shown to inhibit HBs Ag binding, while 
methanolic extracts from seeds of Terminalia bellerica and leaves of Enicostemma axillare have been demonstrated to 
block HBV DNA polymerase. Phyllanthus amarus extracts have been found to downregulate hepatitis B virus mRNA 
transcription, suppress hepatitis B virus polymerase activity, and inhibit the release of the virus into Hep-G/2.2.15 cells 
[74]. The antiviral activity of these three plants was further investigated and it was found that the methanol extract of 
Hybanthus enneaspermus inhibited HBs Ag binding, while methanolic extracts of Terminalia bellerica and Enicostemma 
axillare inhibited HBV DNA polymerase. However, none of the three plants exhibited inhibition of both HBs Ag binding 
and HBV DNA polymerase, indicating that simply screening for antiviral activity using a single assay is not conclusive 
proof and further molecular studies are necessary. These studies also revealed the HBV receptor binding capability of 
all three plants. While there are no published antiviral studies on these three plants, there are numerous other plants 
that have been studied elsewhere and their results are cited for comparison. The methanol extract of Hybanthus 
enneaspermus was found to inhibit both HBs Ag binding and HBV DNA polymerase, while only the methanolic extracts 
of Terminalia bellerica and Enicostemma axillare inhibited HBV DNA polymerase [75]. 

Caudatin is a steroidal compound found in the plant Cynanchum auriculatum. It has been shown to have anti-cancer and 
antiangiogenic properties, meaning it can inhibit the growth of cancer cells and prevent the formation of new blood 
vessels. Caudatin has also been found to have inhibitory activity against the secretion of HBsAg (a protein produced by 
the hepatitis B virus) and the replication of HBV DNA. In particular, the compound 3-O-(3,4,5-trimethoxy) cinnamoyl 
caudatin has been shown to have a novel mechanism of anti-HBV action by interfering with HBV enhancers and 
promoters. In laboratory studies, caudatin has been shown to cause cell cycle arrest and induce apoptosis (a type of 
programmed cell death). The IC50 values for caudatin's inhibitory activity against HBsAg secretion and HBV DNA 
replication have been measured at 142.67 μmol/L (SI = 1.7) and 40.62 mmol/L (SI = 6.0), respectively [76, 77]. 

Helioxanthin and its derivative are small molecules that have been found to inhibit HBV RNA and viral protein 
expression. These compounds have unique structures compared to other anti-HBV compounds and may have unique 
modes of action. In laboratory studies, the treatment of HepG2.2.15 cells with these compounds resulted in the 
inhibition of HBV mRNA transcripts, including both 3.5 kb and 2.4/2.1 kb mRNAs. This led to a decrease in the HBV core 
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protein. The 3.5 kb mRNA plays a key role in the HBV life cycle as it encodes the HBV core protein and DNA polymerase, 
and serves as the template for minus strand DNA synthesis. These results suggest that helioxanthin and 5-4-2 target 
multiple steps of the viral life cycle and effectively inhibit HBV replication [78, 79]. 

Curcumin, a natural compound found in the spice turmeric, has been shown to have antiviral properties against HBV 
(hepatitis B virus) infection. It is believed to inhibit HBV by down-regulating the expression of certain genes, such as 
PGC-1α, and increasing the stability of the p53 protein [80, 81]. In a study, researchers examined the effects of curcumin 
on cccDNA (circular, covalently closed DNA), a form of the HBV genome found in infected liver cells. They found that 
curcumin was able to reduce the levels of cccDNA-bound histones and overall levels of cccDNA in HBV-infected cells, 
suggesting it may be a promising agent for the treatment of HBV. Further research is needed to fully understand how 
curcumin exerts its antiviral effects [82]. 

Asiaticoside, a compound isolated from the plant Hydrocotyle sibthorpioides, has been shown to effectively suppress the 
levels of HBsAg/HBeAg (proteins produced by the hepatitis B virus), extracellular HBV DNA, and intracellular cccDNA 
(a form of the HBV genome) in a dose-dependent manner. It also inhibits viral DNA transcription and replication by 
inhibiting the activity of certain gene promoters, and reduces replication of the hepatitis B virus (DHBV) without causing 
any obvious signs of toxicity. These findings suggest that asiaticoside may be a promising agent for the treatment of 
HBV infection [83].  

Gymnema sylvestre R. Br. is a plant that has been shown to have antiviral activity. Its active components, known as 
phytoconstituents, have been shown to inhibit the binding of HBsAg (a protein produced by the hepatitis B virus) and 
the activity of HBV DNA polymerase, an enzyme involved in the replication of HBV DNA. These findings suggest that 
Gymnema sylvestre may be a useful agent for the treatment of HBV infection [84]. 

LPRP-Et-97543 is a compound that was isolated from the roots of the plant Liriope platyphylla. It has been shown to 
inhibit the mode of action of the hepatitis B virus (HBV) by controlling gene expression and DNA replication by viral 
proteins. This interference with the viral proteins disrupts the nuclear factor NF-κB pathway, which is a signaling 
pathway that plays a role in the regulation of immune and inflammatory responses. These findings suggest that LPRP-
Et-97543 may be a promising agent for the treatment of HBV infection [85].  

Two new compounds called luteolin-6-C-β-d-boivinopyranosyl-3′-O-β-D-glucopyranoside and chrysoeriol-6-C-β-D-
boivinopyranosyl-4′-O-β-D-glucopyranoside have been identified in the plant Alternanthera philoxeroides. These 
compounds, known as C-boivinopyranosyl flavones, have been shown to have significant anti-HBV (hepatitis B virus) 
activity. Specifically, they have been found to reduce the secretion of HBsAg, a protein produced by HBV, in HepG2.15 
cells, a type of liver cell line. These findings suggest that these C-boivinopyranosyl flavones may be useful agents for the 
treatment of HBV infection [86].  

3.2. Natural compounds targeting viral proteins associated with Hepatitis C for therapeutic intervention 

Delphinidin, a plant pigment found in anthocyanidins, has been shown to be a more effective HCV entry inhibitor. It has 
been observed to inhibit HCV attachment to the cell surface and is effective in primary hepatocytes. It combats the HCV 
entry through the use of HCV pseudo particle (HCVpp), which harbor E1E2 envelope glycoproteins of various genotypes, 
indicating that its inhibitory effects are not limited to a specific genotype. In addition to inhibiting HCVpp entry, 
delphinidin has also been shown to inhibit HCV cell culture (HCVcc) infections, suggesting that it may interfere with the 
function of the E1E2 envelope glycoprotein on the viral particle. Overall, delphinidin appears to be a promising new 
HCV entry inhibitor with potential for use in the treatment of HCV infection [87]. 

Garcinia mangostana, also known as Mangosteen, is a plant native to Indonesia, Malaysia, the Philippines, and Thailand 
that has been shown to have antioxidant and antiviral properties. Researchers have hypothesized that it may have 
therapeutic potential against HCV infection, and a study found that the ethanol extract of mangosteen (MG-EtOH) had 
the most potent anti-HCV replication activity. Further analysis identified two molecules, α- and γ-mangostins, as the 
major contributors to this antiviral effect. The study also found that MG-EtOH was able to restore normal levels of ROS 
production in HCV-infected cells, suggesting that its ROS-scavenging activity may be involved in its inhibitory effect on 
HCV replication [88].  

Epigallocatechin-3-gallate (EGCG), a flavonoid found in green tea, has been shown to inhibit HCV entry. It has been 
tested in HCVcc and HCVpp systems, as well as in primary human hepatocytes, and has been shown to directly act on 
the viral particle to prevent attachment to the cell surface [89, 90, 91]. EGCG has also been observed to have a pan-
genotypic effect against HCV, meaning it is effective against all genotypes of the virus. It is thought that EGCG may alter 
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the structure of the HCV envelope by acting on the E1E2 envelope glycoprotein, without disrupting it, leading to the 
blockade of HCV binding to cells. EGCG has also been suggested to inhibit the binding of the HCV envelope to cell surface 
heparan sulphate [92, 93]. Gallic acid is a type of phenolic acid that has been identified as an anti-HCV (hepatitis C virus) 
agent when isolated from grape seed extract. It has also been isolated from a plant called Limonium sinense, which 
belongs to the Plumbaginaceae family and is commonly used in traditional medicine. When a root water extract from L. 
sinense was tested, it was found to inhibit HCV infection at the entry step, which refers to the initial stage of the virus 
entering and infecting a host cell. This inhibition occurred more specifically during the attachment and 
fusion/endocytosis processes, which involve the virus attaching to and merging with the host cell membrane. Gallic acid 
was found to be the most active in inhibiting this process, with an inhibitory activity on viral entry with an IC50 value 
of 36.4 (M) [94, 95]. Apigenin is a flavonoid found in certain plants that has been shown to inhibit the replication of 
hepatitis C virus (HCV) by blocking the maturation of microRNA (miRNA) called miR122 [96, 97]. miR122 is essential 
for the replication of HCV RNA in liver cells [98, 99]. Research has also shown that apigenin and another flavonoid called 
luteolin can inhibit HCV infection and replication in cells expressing HCV replicon [100]. These compounds were 
identified using a pharmacophore and structure-based study targeting NS5B, and the anti-NS5B polymerase activity of 
luteolin was confirmed in vitro. Apigenin and luteolin extracted from the plant Eclipta alba, which is used in Ayurvedic 
medicine, have also been shown to inhibit HCV replication by inhibiting NS5B RNA-dependent RNA polymerase in vitro 
and in cells expressing a sub genomic replicon [101]. Lucidone, a compound isolated from the fruit of the plant Lindera 
erythrocarpa, has been shown to specifically inhibit the replication of hepatitis C virus (HCV) RNA. L. erythrocarpa, a 
plant native to Asia, has traditionally been used in folk medicine and its fruit has a range of pharmacological properties. 
Research has shown that HCV RNA levels are suppressed by lucidone in a concentration-dependent manner, with an 
EC50 (concentration required to achieve 50% effectiveness) of 15 ± 0.5 μM in HCV replicon cells. The compound was 
also found to have a CC50 (concentration required to achieve 50% cytotoxicity) of 620 ± 5 μM, indicating that it is not 
cytotoxic at effective antiviral concentrations. An infectious assay confirmed the inhibitory effect of lucidone on viral 
RNA replication with an EC50 of 20 ± 1.1 μM, and a selectivity index (SI; CC50/EC50) of approximately 31, suggesting 
that it could be a promising lead compound for the development of new anti-HCV agents [102]. The resveratrol tetramer 
Vitisin B, which is found in the root of grapevines, has been shown to have the highest anti-hepatitis C virus (HCV) 
replication activity. Further analysis of several HCV variants resistant to vitisin B, as well as in vitro binding and helicase 
assays, suggests that the mode of action of vitisin B is the inhibition of the viral helicase NS3. Vitisin B was found to have 
the greatest activity against HCV replication, and it is thought that its direct binding to and inhibition of HCV NS3 helicase 
may be an important factor in its ability to effectively suppress HCV replication [103]. Inhibition of early hepatitis C 
virus (HCV) entry has been demonstrated for Saikosaponin Sb2. Virus particles are neutralised, attachment is 
prevented, and entry and fusion are blocked. It has been shown that SSb2 acts on the HCV E2 protein through analysis 
of soluble viral glycoproteins. Furthermore, SSb2 has been shown to prevent the binding of serum-derived HCV to 
hepatoma cells, as well as inhibit infection by multiple genotypic strains of HCV. Researchers have discovered that SSb2 
can prevent HCV infection in primary human hepatocytes when used as a treatment [104]. Honokiol is a natural 
compound found in the Magnolia officinalis plant that has been shown to have several pharmacological effects, including 
anti-inflammatory and anti-cancer properties. In pre-clinical studies, honokiol has demonstrated effectiveness in 
inhibiting the replication of the hepatitis C virus (HCV) by reducing the expression of proteins that are necessary for 
HCV infection. This antiviral activity is observed at low concentrations of honokiol and does not appear to be toxic to 
cells. Honokiol may also inhibit HCV replication by modulating signaling pathways related to reactive oxygen species 
(ROS), PI3K/Akt, NFB, and STAT3. When combined with a low dose of interferon-a, honokiol has been shown to have 
an even more potent inhibitory effect on HCV replication compared to the standard treatment with ribavirin [105]. 
Naringenin is a flavonoid that is found in grapefruit and is commonly used as a dietary supplement. It has been shown 
to have anti-oxidant, anti-inflammatory, and anti-carcinogenic properties both in laboratory and animal studies. 
Naringenin has been found to inhibit the secretion of ApoB and HCV particles in a dose-dependent manner, without 
affecting the levels of HCV RNA or protein within cells. This suggests that naringenin may prevent the accumulation of 
infectious particles by blocking the assembly of HCV [106].  

4. Conclusion 

HBV & HCV, are a major cause of liver cancer and pose a significant threat to global health. As there are only a few drugs 
against HBV & HCV and no vaccine for HCV, there is an urgent need for the discovery of new and natural agents, having 
lesser side effects compared to chemical drugs. In this context, several attempts are made to successfully identify the 
inhibitors of hepatotropic viruses, including peptides, vaccines, small molecule compounds, and even natural products 
exhibiting anti-viral activity. The present review is, therefore, an attempt to review the existing literature for potential 
natural inhibitors against hepatotropic viruses causing liver cancer to provide an overview that could assist in further 
investigations related to this topic of concern. These natural inhibitors are suitable for managing Liver cancer infections 
through the modulation of a wide range of molecular targets through effective mechanisms of action (Table.3) and 
minimum toxicity. For example, Rosmarinic acid can be used against HBV which hinders viral replication and 
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Epigallocatechin-3-gallate (EGCG) alters HCV envelop protein’s structure hampering the viral entry in the host. Overall, 
the data collected from various sources indicated the availability of different classes of compounds with high favourable 
efficacy are included are flavonoids, flavanones, flavanols, alkaloids, polyphenols, and terpenes. As a future scope, it 
would be valuable to investigate the use of combinations of these compounds for checking the potential of improvement 
in overall therapeutic success. Considering the promising and powerful effects of these natural products, they should 
be further researched, developed and investigated as alternative therapies to current standard treatments. 
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