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Abstract 

An exponential growth rate has been seen in cyberattacks targeting fully integrated servers, apps, and communications 
networks. The Things Network (IoT). Inefficient operation of sensitive devices harms end users, increasing the risk of 
identity theft and cyberattacks, increasing costs, and decreasing revenue as problems with the Internet of Things 
network remain undetected for long periods. Robust cybersecurity solutions are necessary to safeguard digital 
infrastructures against the growing frequency of cyberattacks and the fast growth of the Internet of Things. This 
research looks at the function of Artificial Intelligence (AI) in improving cybersecurity measures, specifically 
emphasising the comparison of signature-based and anomaly-based IDS. ML and DL techniques, including DNN, SVM, 
and Random Forest classifiers, are used in this work to classify cybersecurity risks and detect potential threats using 
the dataset UNSW-NB15. According to our data, the Random Forest model outperforms the competition, with a 98.6% 
accuracy rate and 99% precision, F1 score and recall. The research emphasises the efficacy of AI-powered systems in 
real-time threat identification, emphasising its usefulness in advancing cybersecurity measures. By tackling the issues 
provided by conventional security measures and employing modern ML and DL approaches, this study gives significant 
insights for organisations trying to improve their cybersecurity policies in an increasingly complex threat scenario. 

Keywords: Cybersecurity; Artificial Intelligence; Machine Learning; Threat Detection Systems; Internet of Things; 
UNSW-NB15. 

1. Introduction

Throughout the past several years, the prevalence of IoT devices in daily life has increased significantly. System safety 
measures are receiving more attention as the role of information technology in people's daily lives grows in response 
to growing concerns about network security and privacy[1]. There have been increased attempts to compromise 
computer systems and machine networks due to the proliferation of sophisticated technology and new Internet 
applications, such as the IoT[2][3]. The IoT has seen rapid growth. It consists of smart gadgets and networked things 
that run without direct human involvement. Many smart Internet of Things devices have sensors built into them that 
make it easier for them to connect to the Internet. This allows information to be shared across different nodes for 
applications in transportation, healthcare, agriculture, and other fields [4][5]. IoT devices aim to transform work 
habits[6], save time and resources, and optimise operations[7]. Not only can the IoT be very advantageous, but it also 
offers a boundless amount of opportunities for the distribution, expansion, and personalisation of data[8]. 

Most cybersecurity specialists will always consider IoT devices as fortunately, never to be targeted again because, in 
this one weakness, attackers can easily overpower them[9]. It has also contributed to the escalation of artificial 
intelligence being used by hackers to bypass other computational systems developed to assist in detecting such strange 
behaviour. The emergence of IoT technology has resulted in lots of attention being paid to AI[10]. As a result of this 
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expansion, IoT cybersecurity apps have started to integrate AI instruments such as DT, linear regression, and ML in the 
quest for identifying cyber threats [11]. 

One of society’s major turning points is the appearance of AI as a driving force in development. Compared to the more 
traditional security approaches to security, then AI offers much more credible results. This is a great example of AI 
power; it can analyse and learn from voluminous databases and new information and predict perils[12][13]. The cyber 
threat environment is dynamic and hence cannot be overcome by traditional measures such as through firewalls, 
antivirus and other programs. There is an obvious demand for such characteristics as innovative, strong, and efficient 
cybersecurity solutions[14][15]. It is also important with high-speed capabilities that immediate alerts on any 
suspicious activities or anomalies that are detected are provided by the machine learning models. AI can recognise 
emergent, malicious behaviour on the network, for example, an increase in data processing or login activity, and present 
them as security threats[16]. This means that real-time analysis enables organisational security personnel to respond 
to potential security incidents faster, hence minimising their effects and slashing the time required to address perceived 
security threats by more than half[17]. 

Specifically, the purpose of the present study is to review and comparatively analyse a number of approaches and 
techniques of both ML and DL for enhancing cybersecurity in general, with a focus on such subfields as cybersecurity 
threat analysis and intrusion detection. This study tries to identify and categorise cybersecurity threats more accurately 
using advanced computation methods; it seeks to meet the growing challenge of threats in a connected world where 
IoT devices have gained popularity. 

1.1. Contributions of the Study 

This work enriches cybersecurity knowledge stock significantly since it explores the DL and ML-based methodologies 
for handling and analysing network attacks employing the UNSW-NB15 set. The key contributions are as: 

 Through feature scale, missing value and one hot encoder, the study maintains the quality data that results in 
enhanced performance of the developed models. 

 Evaluate various models, including CNN, ANN, LSTM, and Random Forest, providing a comparative analysis 
for detecting cybersecurity threats. 

 The use of the dataset UNSW-NB15 ensures the study's relevance by incorporating real-world data that 
reflects current cyber threats. 

 Utilising metrics like recall, accuracy, precision, and F1-score to assess model performance to offer 
comprehensive insights into the efficacy of different approaches 

1.2. Organization of the paper 

The paper's structure is as follows: Previous studies on cybersecurity threats, together with any gaps in the literature 
and new additions, are presented in Sections I and II. The mechanism of this is then provided in Section III. Section V 
offers a conclusion and future scope, whereas Section IV presents findings and discusses them. Conclusion and future 
endeavours are presented in the final section.  

2. Literature Review 

The previous research on Cybersecurity Threat Detection in IoT Networks employing ML and DL techniques is provided 
in this section. 

In this study, Kodali and Muntean (2021) compare how to distinguish between attack and regular network data using 
cutting-edge DL models like Autoencoder-FCN and FCN. The CICIDS2017 dataset, which comprises further than 2.8 
million network data annals and reflects real-world data, is used in the study; the dataset reflects the furthermost 
current, common outbreaks observed in current network settings and includes both typical and attack data. Because of 
low error rates and accuracy parameters greater than 97%, FCN and Autoencoder-FCN were observed to work very 
well. When comparing the two approaches, the FCN model finds it simpler to get somewhat better performance than 
the model of Autoencoder-FCN. The autoencoder-FCN model took longer to train when the model was deployed 
remotely, but the FCN model took less time[18]. 

This paper by, Mosaiyebzadeh et al., (2021) proposes a NIDS that is developed using DL and which takes is input from 
a dataset of MQTT attacks freely available to the public. Recall, Accuracy, precision, F1-score, and weighted average are 
a few of the metrics that are typically with the gauge how effective the proposal is. Through study of our DL-based 
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Network IDS's performance assessment findings, we were able to identify MQTT assaults with an F1 sof 98.33% and an 
average accuracy of 97.09%. The current research is extremely replicable because the experiments are also available 
on GitHub. This makes sense as well because the trials were also shared on GitHub Asia [19]. 

In this study, Xu et al., (2021) introduce a new method for detecting network anomalies that employ five layers of 
autoencoder (AE). The rationale for our proposing this is based on the results that we obtained after carrying out a 
detailed and very comprehensive analysis of several performance parameters linked to an AE model for predicting 
breast cancer. In order to minimise the effect of imbalance between feature set data types in the model’s bias, in this 
research work, we provide a novel approach to data pre-processing that reorganises and eliminates input samples that 
include more significant outliers. Thus, for the identification of typical or abnormal network traffic samples, our 
suggested model employs the best reconstruction error function. Applying those advanced techniques and the proper 
model structure, our model is crucially capable of learning features and performing dimensional reduction successfully, 
which contributes to raising the accuracy of detection and, therefore, the f1-score. In this paper, we applied the NSL-
KDD data set to examine the feasibility of the model we proposed; the current methods were surpassed by those in 
terms of highest detection accuracy and f1 of 90.61% and 92.26%, individually [20]. 

In this work, Farhin et al. (2020) propose a paradigm for identifying attacks on the IoT using software-defined networks. 
The SDN controller reported that traffic and source nodes could be prohibited after the flow of traffic has been studied, 
or abnormality is spotted. With SDN, a system which implements FNNs to detect some forms of assaults such as; man-
in-the-middle, DDoS, side-channel, and harmful code is being contemplated. Two datasets from NSL-KDD are employed 
to train and evaluate the FNN. The consequences of the tests establish that the optional attack detection system, which 
uses FNN, has an accuracy rate of 83% in identifying the specified assault[21].  

 In this paper, Alrashdi et al., (2019) one of the solutions put forward is the AD-IoT system, a smart anomaly detector in 
smart cities and the RF algorithm is used for ML. It is noted that distributed fog nodes of the system employing the 
proposed approach can detect hacked IoT devices. To evaluate and demonstrate the correctness of the model, a modern 
dataset was employed. The findings suggest that the AD-IoT may complete the lowest FPR and the best classification 
accuracy of 99.34%[22]. 

Table 1 Summary of Comparative Analysis of Cybersecurity Threat Detection in IoT Networks 

References Methodology Dataset Performance Limitations & Future Work 

Mosaiyebza
deh et al. 
[19] 

Network IDS based on Deep 
Learning 

 

Public dataset 
using MQTT 

 

97.09% Accuracy, 
98.33% F1-Score 

DL-based Network IDS shows 
high accuracy and F1-score in 
detecting MQTT attacks, with 
shared code for 
reproducibility. 

Kodali and 
Muntean[18
] 

FCN and Autoencoder-FCN 
models for detection of 
intrusion are compared. 

CICIDS2017 
(more than 
2.8M records 
of network 
data) 

FCN and 
Autoencoder-FCN 
both achieved over 
97% accuracy; 
FCN had lower 
training time. 

Further optimisation needed 
for Autoencoder-FCN to 
reduce training time. 

Alrashdi 
et.al. [22] 

The RF method is used by the 
Anomaly detection IoT (AD-
IoT) system to identify 
anomalies at fog nodes. 

Modern IoT 
cybersecurity 
dataset 

Classification 
accuracy: 99.34%, 
Lowest false 
positive rate. 

More verification is required 
on bigger and more varied 
datasets. 

Farhin et al. 
(2020) [21] 

Fuzzy Neural Network (FNN) 
in Software-defined 
Networks (SDN) 

NSL-KDD 83% Accuracy FNN-based attack detection 
system in SDN effectively 
detects multiple attack types 
with moderate accuracy. 

Xu et al. 
(2021) [20] 

5-layer autoencoder model 
with new preprocessing 
methods and reconstruction 
error function. 

NSL-KDD Accuracy: 90.61%, 
F1-Score: 92.26% 

Limited to NSL-KDD; may not 
generalise to other datasets. 
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2.1. Research gaps 

Several research gaps exist for IoT contexts, despite advances in IDS and machine learning-based anomaly detection. 
Current research has displayed promising outcomes according to accuracy and performance, such as the high accuracy 
of signature-based IDS, anomaly-based systems, and different ML models, including FCN, RF, and GB approaches. 
However, the trade-offs between energy efficiency, computing resource use, and real-world application have yet to be 
adequately resolved. For example, anomaly-based IDS use much more power, and models like Autoencoder-FCN have 
long training durations, which might be restricting in resource-constrained IoT applications. 

3. Methodology 

This section outlines the suggested approach for controlling and analysing cybersecurity threats, taking into account all 
available ML and DL techniques. The analysis of the UNSW-NB15 dataset starts with data collection, followed by 
extensive preparation, which includes feature normalisation to standardise data, addressing missing values, and using 
One-Hot Encoding for category labelling. The data flow in various steps and phases that shown in data flow Figure 1. 
Feature selection is done to save just the most important characteristics, which improves model performance and 
computational efficiency. Then, two sets are created from the dataset: 20% is used for testing and 80% for training. On 
the basis of the data, many classification models are trained, including RF, LSTM, ANN, and CNN. These models are 
evaluated for their capacity to identify network intrusions using a variation of crucial performance criteria, such as 
precision, recall, accuracy and F1-score, which provide dependable and accurate predictions. 

 

Figure 1 Data Flow Diagram 

The following steps of a data flow diagram are briefly explained below: 

3.1. Data Collection 

The UNSW-NB15 dataset was used to carry out this investigation. The test set has 82,332 records, whereas the training 
set contains 175,341 values. The collection includes both typical network traffic and nine distinct types of attacks. From 
the network packets, 42 characteristics have been retrieved. Numerous approaches are used to categorise attacks, 
including worms, reconnaissance, Shellcode, fuzzers, analysis, backdoors, denial of service, exploits, and generics.  
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3.2. Data Preprocessing 

The implementation process includes data preparation as one of its primary components. An essential initial step in the 
information discovery process is data pre-processing. There are several procedures involved, such as transformation 
and reduction of data. Improving the quality of the raw data is necessary to guarantee the efficacy and precision of 
learning algorithms. Thus, by following the relevant data preparation procedures and utilising the appropriate learning 
algorithms, the collected data may be appropriately examined. [23]. Further processing key terms are as follows  

 Missing and Null Values: the columns or rows that contain zeros or null values in order to remove the 
missing values.  

 Drop columns: delete and drop the unnecessary columns from the dataset. 

3.3. Normalization using standardisation  

The features were changed by using the standardisation method. Normalisation is a data transformation procedure that 
centres on a zero mean and a one standard deviation. Limits are not bound by this procedure. In Equation (1), we can 
see a standardisation formula in which x stands for an observation, representing both the data's mean and standard 
deviation. 

 𝑥𝑛 =
𝑥−𝜇

𝜎
 

where 𝑥𝑛 = normalized value, x = original value, 𝜇 = mean of data, and 𝜎 = data standard deviation. 

3.4. One-Hot Encoding for data labeling 

A kind of hot encoding is one that uses binary representation of the data as a feature. This is a popular approach that 
compares the numerical variable at each level to a predetermined baseline. This thesis represents the acquired data set 
using binary vectors representing category variables using one hot encoding [24].  

3.5. Feature Selection 

An essential part of data preparation is feature selection. Improving model performance and reducing complexity may 
be achieved by identifying and choosing key characteristics. In this phase, the Pearson correlation technique was 
utilised to identify highly correlated features in the dataset, helping to select the most relevant ones for the analysis 
[25].  

3.6. Data Splitting 

Before starting to build the model, separate the data into subsets for testing and training. Eighty per cent of the dataset 
was utilised for training, while 20 per cent was used for testing the model. 

3.7. Classification Models 

This section discusses the Analysis and Classification of ML models like SVM, DNN, and RF explained below: 

3.7.1. Support vector machine (SVM) 

Currently, the most widely utilised ML technology by data scientists and enterprises worldwide is SVM, a robust learning 
algorithm. Hyperplanes are used to divide the various classes in this supervised learning technique, which searches for 
patterns within classes. In order to efficiently divide the features into discrete classes, the technique entails projecting 
the given characteristics into a feature space that is high-dimensional and optimising the hyperplane. 

3.7.2. Deep Neural Networks (DNN) 

An ANN with input, hidden, and output layers is called a DNN. By adjusting the relative importance of its connections, 
this network architecture may learn to do distributed processing in parallel [26]. 

3.7.3. Random Forest (RF)  

An ML technique called RF belongs to the class of parallel ensembling techniques, which we shall discuss in a moment. 
It expands upon the idea of parallel tree training known as bagging. Bagging uses data produced via bootstrap 
aggregating, which takes many random samples and replaces them with data from the original collection, to construct 
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trees. All of the trees ˆf are trained using each subsample B. Thus, every tree takes in information from a number of 
subsamples that are somewhat different from one another.  

𝑓𝑏𝑎𝑔(𝑥) =
1

𝐵
∑ 𝑓∗𝑏(𝑥)𝐵

𝑏=1   

The last forecast in a regression tree is just the mean of all the projections, as shown in (2) [27]. In order to reduce 
variation and improve generalisation error, bagging may be used to create numerous decision trees on the same set of 
data. As a result of using the same variables in every regression tree, bagging results in a high correlation between the 
trees. Consequently, this will exacerbate the generalisation mistake and raise the variance. This issue is resolved in 
random forests by decorating the trees. If just m factors are considered at each split, the trees will all have different 
properties and be constructed from different samples. Following the random generation of many features (j) at each 
split, the feature with the splitting point t that minimises (1) is chosen. The least significant factors have an opportunity 
to affect the outcome since every tree is different and has randomised properties, which implies that the most significant 
variable is not necessarily at the first split. The model will thus function better on data that is not in the sample. A few 
hyperparameters are also used by the random forest method to reduce overfitting to training data. These establish the 
maximum depth of each tree, the number of trees to be considered at each split, and the number of trees utilised in the 
model. 

3.8. Model Evaluation 

A performance matrix that contrasted the actual observations with the model projections was used to assess the 
effectiveness of the chosen models. The metrics in the performance matrix were recall, F1-score, precision, and 
accuracy. Each class's metrics were calculated independently: True Positives (TPs) are the number of positive events 
that were correctly recognised, while True Negatives (TNs) are the number of negative events that were correctly 
categorised. There are two types of incorrect classifications: false positives (FPs) and false negatives (FNs). FPs show 
how many occurrences were wrongly classed as positive, while FNs show how many instances were wrongly classified 
as negative. Using these formulae, we can express the assessment metrics:  

3.8.1. Accuracy 

The most popular and straightforward indicator for evaluating models is accuracy, which gives a clear indication of the 
percentage of samples that are properly identified. The formula (3)   

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

3.8.2. Precision 

The percentage of all true positives that fall inside the predicted positive range relative to all true positives is known as 
a precision measure. To illustrate, consider Equation 4: it represents the likelihood of accurately classifying a positive 
sample. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

3.8.3. Recall 

The percentage of truly positive samples compared to the overall number of positive samples is called recall, which is 
often referred to as the detection rate. Equation 5 illustrates how the recall detection rate serves as a gauge for the 
model's capacity to identify attacks. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

3.8.4. F1-Score 

The weighted average of recall (R) and precision (P) determines the machine learning F1-Score, with 0 being the lowest 
score and 1 the highest. Equation 6 illustrates the F1 Measure, a more thorough evaluation statistic than accuracy[28]: 

 𝐹1 −  𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
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4. Result Analysis and Discussion 

The result Analysis and Classification of Cybersecurity Threat Based on ML and DL. This analysis conducted, four 
evaluation metrics that were performed— Recordings of the confusion matrix, F1-Score, accuracy, recall, and precision 
were made, and they were used to assess deep learning models.  

4.1. Exploratory Data Analysis (EDA) 

A thorough understanding of the data requires the completion of exploratory analysis. A variety of procedures have 
been established to determine the optimal parameter values and extract relevant information. Initially, as shown in 
Figure 2, a heatmap was made to ascertain the level of association between various parameters.  

 

Figure 2 Heatmap for binary classification. 

The correlation matrix for binary classification is seen in Figure 2. The heatmap's cells, which range in colour from dark 
blue (strong positive correlation) to dark red (strong negative correlation), each reflect the correlation coefficient 
between two variables. The correlation values vary from -1.00 to 1.00, according to the scale on the right.  

 

Figure 3 Dataset distribution 

The normal and abnormal label distribution in a dataset is shown in Figure 3. For 75.19% of the data, the category is 
"Normal" (green portion), while for 24.01% of the data, it is "Abnormal" (red section). This shows that the majority of 
the occurrences in the dataset are usual, with just a small fraction being classified as aberrant. 
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4.2. Experiment results  

This section provides the experiment result of ML model for Cybersecurity Threat Detection in IoT Networks. Table 2 
shows the RF model achieves highest accuracy. 

Table 2 Results of the Random Forest model on UNSW-NB15 dataset 

Matrix  Random forest  

Accuracy 0.986 

Precision 0.99 

Recall 0.99 

F1-Score 0.99 

 

Figure 4 Random Forest Performance on Dataset 

The bar graph for the RF model is shown in Table 2 and Figure 4. The RF model achieves 0.986 accuracy, recall, precision, 
and f1-score is 0.99%.  

 

Figure 5 Random Forest Classifier results 

A graph Random Forest binary classification is seen in Figure 5. It does a series of comparisons between actual values (in 
blue) and predicted values (in red). For binary outcomes, the x-axis may take values between 0 and 200, while the y-
axis can take values between 0.0 and 1.0. To evaluate how well an RF algorithm categorises binary outcomes, this 
graphical depiction compares predicted values to actual ones. 

4.3. Comparative analysis  

The comparison between RF and another machine learning model performance on UNSW-NB-15 data across 
performance parameters. This comparison shows the RF model outperforms compare to other models, as shown in 
Table 3. 
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Table 3 Comparative analysis for cybersecurity threat detection on dataset 

Models Accuracy Precision Recall F1-Score 

SVM[29] 62.42 60.91 60.91 60.91 

DNN[30] 75.9  81.9  72.4  76.6 

RFC 98.6 99 99 99 

The comparative analysis of Cybersecurity Threat detection with ML and DL models is displayed in Table 3. The 
comparison of SVM, DNN, and RF Classifier models shows a clear distinction in their performance. SVM exhibits the 
lowest performance crosswise all systems of metrics, with an accuracy of 62.42% and equally low recall, precision, and 
F1-score of 60.91%, indicating moderate prediction capabilities. In contrast, DNN significantly improves on these 
results, achieving an accuracy of 75.9%, with a notable increase in precision of 81.9%, though recall of 72.4% and F1-
score 76.6% are slightly lower, reflecting a better balance between false positives and false negatives. However, RFC 
outperforms both models, demonstrating exceptional accuracy of 98.6% and achieving near-perfect precision, recall, 
and F1-scores of 99%, making it the most effective model in this comparison for accurate classification. 

5. Conclusion  

An exponential growth rate has been seen in the number of cyberattacks targeting fully integrated servers, apps, and 
communications networks via the IoT. End users are hurt by inefficient sensitive device operation, which in turn raises 
cyber dangers and identity abuse, drives up expenses, and cuts into income as issues with the IoT network go unnoticed 
for extended periods of time. Almost real-time monitoring of IoT interface attacks is required for effective safety and 
security. A Cybersecurity Threat Detection system that is designed to identify assaults that target the IoT has been 
created. This study uses UNSW-NB15 dataset for cyber threat detection. Important performance metrics, including 
precision, accuracy, F1-score and recall, were used to train and assess the models. The models were ready for use by 
carefully preparing the data, which included selecting and normalising the features. Because of its 98.6% accuracy, 99% 
precision, and 99% recall, the RF model outperformed all of the others when it came to NID. This study underscores the 
probable of RF and DL models in enhancing cybersecurity through accuracy and reliability. To enhance the robustness 
and adaptability of the models, future work could explore additional datasets with more diverse and dynamic attack 
patterns to improve generalisation across different network environments. 
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