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Abstract 

This article presents an over view of Geometric Function Theory (GFT) and utilized the analytic properties of 
meromorphic functions. Geometric Function Theory is a branch of mathematics that focuses on the geometric 
interpretations and implications of analytic functions defined in the complex plane. Our exploration begins with an 
itemized discussion of key concepts within GFT, emphasizing their relevance and theoretical underpinnings. Central to 
our study is the investigation of meromorphic functions, which are functions that are analytic except for isolated 
singularities where they may have poles. We examined various classes of meromorphic functions and elucidate their 
properties, including their behavior near singularities and their broader geometric implications. A significant portion 
of our inquiry involves the Hadamard product of functions. This operation allows us to explore the combined effect of 
two analytic functions, considering their series expansions and how their product transforms under this operation. By 
studying the Hadamard transformation, we uncover analogues and interesting results that shed light on the interplay 
between analytic functions and their geometric representations. We also provide detailed diagrammatic descriptions of 
fundamental geometric shapes such as circles, open unit disks, and closed unit disks. These diagrams serve to visually 
illustrate key concepts and relationships within GFT, aiding in the understanding of how analytic functions behave in 
different spatial configurations. Our article offers a comprehensive exploration of Geometric Function Theory, 
emphasizing its foundational concepts and their applications in analyzing analytic and meromorphic functions. 

Keywords: Geometric function theory; Analytic functions; Meromorphic functions; Hadamard product; Unit disk; 
Starlike functions; Convex functions 

1. Introduction

Geometric function theory (GFT) is one of the most striking areas in mathematical analysis that has raised interest of 
many researchers since the beginning of 20th century. Teodor et-tal (2010),this branch of complex analysis is highly 
fascinating because of its applications in other fields, like model mathematical physics, fluid dynamics, fractional 
calculus, linear and nonlinear integreable system theory and theory of partial differential equations. Geometric Function 
Theory (GFT) deals with the theory of univalent functions and it is associated with geometry properties of analytic 
functions.. 

1.1. Applications of Geometric Function Theory 

Conformal Mapping and Cartography: Conformal mappings, which preserve angles locally, are extensively used in 
cartography to create accurate map projections. By employing GFT principles, cartographers can transform the Earth's 
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curved surface into a flat map while preserving shapes and angles, crucial for navigation and spatial analysis (Roshihan, 
et al 2009). 

Complex Analysis in Mathematical Physics: GFT provides powerful tools for studying harmonic functions and 
potential theory, which are foundational in mathematical physics. These tools are essential in analyzing heat conduction, 
gravitational fields, and quantum mechanics, where understanding the behavior of analytic functions in complex 
domains is crucial (Cho and Srivastava, 2003). 

1.2. Some basic definitions 

1.2.1. Complex Plane 

the set of all complex numbers is designed by ℂ = {𝑧 =  𝑥 +  𝑖𝑦 ∶ 𝑥, 𝑦 𝜖ℝ}. The field of complex number is the set 
ℂequipped with the basic arithmetic operations of addition, subtraction, multiplication and division .    

The imaginary part of a complex number 𝑧 is written as 𝐼𝑚 (𝑧) hile its real part is denoted 𝑅𝑒 (𝑧). 

1.2.2. 𝑈nit Disk 

A disk is a region in a plane bounded by a circle. A unit disk is denoted Δ = {𝑧: |𝒛| < 1}i.e a set of all points z in the 
complex plane which lie in the |𝒛| < 1 . A set of points inside a circle of radius r about 𝑧 = 𝑧0 is called an open disk or 
neighborhood of 𝑧0 , open disk can be written as |𝑧 − 𝑧0| < 𝑟. The set of all point in |𝑧 − 𝑧0| ≤ 𝑟 is the closed disk of 
radius 𝑟 about = 𝑧0 . In other words, a disk is said to be closed when it includes the bounding circle and its said to be 
open when it does not. 

   

Circle Open disk closed disk 

Figure 1 Circle, open and closed disk 

1.2.3. Analytic function 

Supposed that Δ = {𝑧: 𝝐 ℂ ∶ |𝒛| < 1}denotes open unit disk in the complex plane ℂ.  A function  𝑓(𝑧)  of the complex 
variable is said to be analytic at a point 𝑧0 if its derivative exist not only at 𝑧0 but at every point at some neighborhood 
of 𝑧0. A function 𝑓(𝑧) is analytic in a unit disk Δ if it is analytic every point in the complex plane ℂ, we say that 𝑓(𝑧) is 
entire function.An analytic function of complex variable 𝑧 is also called monogenic, regular or holomorphic function.  

Example 1.2.1  

The function 
1

𝑧
 is analytic everywhere in the complex plane ℂ except at 𝑧 =  0 because its derivative does not exist at 

𝑧 =  0. 

1.2.4. Differentiability of function of complex variables  

A domain Ω is any connected open subset of the complex plane (ℂ) it includes the open upper half plane and the open 
disk. Supposed 𝑧0 is an interior point on the domain of a function 𝑓(𝑧), the function 𝑓(𝑧) is said to be differentiable at 
point 𝑧0 if the derivative 𝑓′(𝑧) exist at point 𝑧0. In words, other the graph of 𝑓(𝑧)does not have vertical tangent line at 

the point (𝑧0, 𝑓(𝑧0))and it has no break point and angel but relatively smooth.  

A function 𝑓: ℂ ⟶ ℂ is said to be differentiable at 𝑧 = 𝑧0 if  

𝑓′ (𝑧0) =  lim
ℎ⟶0

 𝑓(𝑧0  + ℎ) − 𝑓(𝑧0)

ℎ
… … … … ….               (1.2.5)  
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Provided the limit exist and is independent of path as ℎ ⟶ 0.   

1.2.5. Continuity of function of complex variable 

The property of continuity of function is exhibited by various aspect of nature such as the water flowing in the river at 
time t, the flow of blood and the growth of human being at time t, etc. A function 𝑓(𝑧) of complex variable 𝑧 is said to be 
continuous at the point 𝑧0  if for any given positive number𝝐 there exist a number 𝛿  such that as |𝑓(𝑧) − 𝑓(𝑧0)| < 𝜖 
whenever|𝑧 − 𝑧0| < 𝛿. In other words, we say that a function 𝑓(𝑧) is continuous at a point 𝑧0 when we can make the 
value of 𝑓(𝑧) become close to 𝑓(𝑧0) by taking 𝑧 close to 𝑧0. It can be written lim

𝑧⟶𝑧0

𝑓(𝑧)= 𝑓(𝑧0). 

A function 𝑓(𝑧)  is said to be class 𝐶𝑘  if the first K derivatives 𝑓′ (𝑧), 𝑓′′ (𝑧) , 𝑓′′′ (𝑧), …, 𝑓(𝑧)𝑘  all exist and are all 
continuous. A function 𝑓(𝑧) is said to be of class 𝐶∞ if the function is smooth and the derivative of 𝑓(𝑧) exists for all 
positive integers 𝑘.Most continuously differentiable functions are sometime said to be of class𝐶1. All the differentiable 
functions are continuous but not all continuous function are differentiable.  

1.2.6. Univalent function S 

Koebe (1907) initiated the theory of univalent functions. He found the range of all univalent functions S containing a 

common disk |𝒛| <
𝟏

𝟒
, the leading example of univalent function is the function 𝑘(𝑧) called the koebe function defined 

by 𝑘(𝑧)=
𝑧

(1−𝑧)2 = 𝑧 + 2𝑧2 + 3𝑧3+…  = ∑ nzn∞
𝑛=1  … … … … … … . (1.2.6) 

It maps Δ onto the complex plane but does not contain the point - ∞ to - 
𝟏

𝟒
 and so does not include any disk centered at 

0 and radius greater than 
𝟏

𝟒
. A function a 𝑓(𝑧) is said to be univalent in a domain Ω if it is one-to-one and analytic on Ω i 

that is given 𝑧 and 𝑧 ,𝑓(𝑧)=𝑓(𝑧′) ⇒ 𝑧 = 𝑧′ and 𝑓(𝑧) ≠ 𝑓 (𝑧′) ⇒ z ≠ 𝑧′. 

1.2.7. Single and multi-valued functions 

A function might be single valued or multi-valued depends on the domain of restriction. For example, 𝑓(𝑥)=(𝑥 + 1)
1

2 has 

a single value for 𝑥 =  0, 𝑓(𝑥) 𝜖 ℝ , but has the infinite solutions for 𝑓(𝑥)  =𝑒2𝜋(1+𝑛)𝑖 2⁄  n𝜖 ℤ in the complex filed. A 
function 𝑓(𝑧) of complex variable z is said to be single value function if 𝑓(𝑧) has only one value for each value of z in the 
domain of restriction while a function 𝑓(𝑧) is called a multi-valued function if f(𝑧) has more than 0ne distinct values for 

each value of z in the domain of restriction some examples of multivalent functions include √𝑧, 𝑛√𝑧 , 𝑙𝑜𝑔𝑧, cos−1 𝑧 and 
sin−1 𝑧. 

Normalized function. 

 If 𝑓(𝑧) is analytic at z=𝑧0 then the power series ∑ Cn(z − 𝑧0)n  =  C0 + C1(z − 𝑧0) + C2(z − 𝑧0)2∞

𝑛=0
+… (1.2.7) 

Equation (1.2.7) is called the Taylor series expansion of 𝑓(𝑧) around𝑧0. If 𝑧0 = 0 we have Macaurin series expansion of 

𝑓(𝑧) about 𝑧0 = 0, where 𝑐𝑛= 
𝑓𝑛 (𝑧0)

𝑛!
.For 𝑧0= 0 the Maclaurin series can be written as  

𝑓(𝑧) = 𝑐0 + 𝑐1𝑧 + 𝑐2𝑧2 + 𝑐3𝑧3 + ⋯  = ∑ 𝑐𝑛 
∞
𝑛=0 𝑧𝑛 . ,…………………….(1.2.8) 

From (1.2.8) 𝑓(𝑧) − 𝑐0 = 𝑐1𝑧 + 𝑐2𝑧2 + 𝑐3𝑧3 + … 

 Setting 
𝑓(𝑧)−𝑐0

𝑐1
 = ℎ(𝑧)and 

𝑐𝑛

𝑐1
 = 

nb
𝑏𝑛, 𝑁 = 2,3,4 … 

 We have  

ℎ(𝑧) =  𝑧 + ∑ 𝑏𝑛𝑧𝑛∞
𝑛=2  …………………..( 1.2.9) 

Equation (1.2.9) is called a normalized function if ℎ(𝑧) is one-to-one function and has the normalized form (1.2.9) 

A smooth curve 𝛾 is a function 𝑧: [𝑎, 𝑏] ⊂ ℝ ⟶ ℂ such that 𝑧(𝑡) = 𝑥(𝑡) +  𝑖𝑦(𝑡) where 𝑥(𝑡) and 𝑦(𝑡) are real and hence 
differentiable. It is simple (non- self-intersecting if 𝑧(𝑡1) ≠ 𝑧(𝑡2) . for a≤ 𝑡1<𝑡2 < 𝑏and it is closed if 𝑧(𝑎) = 𝑧(𝑏). Any 
smooth curve is directed or oriented with initial point 𝑧(𝑎) and endpoint 𝑧(𝑏).  
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1.2.8. Hadamard Product of Analytic function 

Given two functions 𝜙1(𝑧) and 𝜙2(𝑧) which belong to the class of 𝒜  defined by 𝜙1(𝑧) = z + ∑ bk
∞
𝑘=2 zk , 𝜙2(𝑧) =  z +

∑ ck
∞
𝑘=2 zk then the Hadamard product or (convolution) of functions 𝜙1(𝑧) and 𝜙2(𝑧) denoted (𝜙1(𝑧) ∗ 𝜙2(𝑧)) =  z +

∑ bkck
∞
𝑘=2 zk𝑧𝝐Δ 1.2.9 

Example 1.2.3  

The Hadamard product of the horizontal strip map 𝜙1(𝑧) =
1

2
𝑙𝑜𝑔 (

1+𝑧

1−𝑧
) and the function 𝜙2(𝑧) =

𝑧(1+𝑧2)

(1−𝑧2)2 can be obtained 

as follows  

From Maclaurin series  

1

1 − 𝑧
= 1 + 𝑧 + 𝑧2 + 𝑧3 + 𝑧4 +  …  𝑧𝝐Δ 

Integrating both sides we have  

log(1 − 𝑧) = − ∑
zk+1

k + 1

∞

𝑘=0

 

similarly
1

1+𝑧
= 1 − 𝑧 + 𝑧2 − 𝑧3 + 𝑧4 + ⋯  𝑧𝝐Δ 

By integrating we have 

log(1 + 𝑧) = ∑(−1)k 
zk+1

k + 1

∞

𝑘=0

 

𝑙𝑜𝑔 (
1 + 𝑧

1 − 𝑧
) = log(1 + 𝑧) − log(1 − 𝑧) = ∑(−1)k 

zk+1

k + 1

∞

𝑘=0

+ ∑
zk+1

k + 1

∞

𝑘=0

 

=  𝑧 −
𝑧2

2
+

𝑧3

3
−

𝑧4

4
+

𝑧5

5
−

𝑧6

6
+ ⋯ + 𝑧 +

𝑧2

2
+

𝑧3

3
+

𝑧4

4
+

𝑧5

5
+

𝑧6

6
+ ⋯ 

=  2𝑧 +
2𝑧3

3
+

2𝑧5

5
+

2𝑧7

7
+= 2 ∑

z2k+1

2k + 1

∞

𝑘=0

 

1

2
𝑙𝑜𝑔 (

1 + 𝑧

1 − 𝑧
) = ∑

z2k+1

2k + 1

∞

𝑘=0

 

Now consider 
1

1−𝑧2 =  1 + 𝑧2 + 𝑧4 + 𝑧6 + ⋯  

Multiply both sides by z, we have  

𝑧

1 − 𝑧2
=  𝑧 + 𝑧3 + 𝑧5 + 𝑧7 + ⋯ 

Differentiating both sides yields  
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1 + 𝑧2

(1 − 𝑧2)2
=  1 + 3𝑧2 + 5𝑧4 + 7𝑧6 + ⋯ 

Multiply both sides by z  

𝑧(1 + 𝑧2)

(1 − 𝑧2)2
=  𝑧 + 3𝑧3 + 5𝑧5 + 7𝑧7 + ⋯ 

𝑧(1 +  𝑧2)

(1 − 𝑧2)2
= ∑(2𝑘 + 1)𝑧2𝑘+1

∞

𝑘=0

 

Finally, the Hadamard product of 𝜙1(𝑧) and 𝜙2(𝑧) is 

(𝜙1(𝑧) ∗ 𝜙2(𝑧)) =
1

2
𝑙𝑜𝑔 (

1 + 𝑧

1 − 𝑧
) ∗ (

𝑧(1 + 𝑧2)

(1 − 𝑧2)2
) = ∑

z2k+1

2k + 1

∞

𝑘=0

∗ ∑(2𝑘 + 1)𝑧2𝑘+1

∞

𝑘=0

 

= (𝑧 +
𝑧3

3
+

𝑧5

5
+

𝑧7

7
+ ⋯ ) ∗ (𝑧 + 3𝑧3 + 5𝑧5 + 7𝑧7 + ⋯ ) = 𝑧 + 𝑧3 + 𝑧5 + ⋯ 𝑧(1 + 𝑧2 + 𝑧4 + ⋯ ) =

𝑧

1−𝑧2 

Definition Miller and Mocanu (2000) 

Let ψ : ℂ3 × ∆ →  ℂ and g(z) be univalent in 

∆. If p(z) is analytic in ∆ and satisfies the second order differential equation subordination 

𝜓(𝑝(𝑧), 𝑧𝑝′(𝑧) + 𝑧2𝑝′′(𝑧) ∶ 𝑧)                  (2.1.10) 

Then 𝑝(𝑧) is called a solution of the differential subordination (2.1. 10). An analytic function 𝑞(𝑧) is called a dominant 
of the solution of the differential subordination (2.1.10) if 𝑝(𝑧)  ≺  𝑞(𝑧) for all 𝑝(𝑧) satisfying (2.1.10). A univalent 
dominant �̅�(𝑧) that satisfies�̅�(𝑧)  ≺  𝑞(𝑧) is said to be the best dominant of (2.1.10) for all 𝑞(𝑧) in (2.1.10) 

Definition let 𝜓: ℂ4 × ∆→ ℂ  and suppose that the function 𝑔(𝑧)  is univalent in ∆  and the univalent function 𝑝(𝑧) 
satisfies the third order differential subordination 

𝜓(𝑝(𝑧), 𝑧𝑝′(𝑧), 𝑧2𝑝′′(𝑧), 𝑧3𝑝′′′(𝑧): 𝑧 ) ≺ 𝑔(𝑧)……………. (2.1.11) 

Then 𝑝(𝑧)  is called a solution of the differential subordination (2.1.11), a given univalent function 𝑞(𝑧)  is called a 
dominant of the solution of (3.1.5) if 𝑝(𝑧) ≺ 𝑞(𝑧)  for every 𝑝(𝑧)  satisfying condition (2.1.11).A dominant �̃�(𝑧)  that 
satisfies the condition �̃�(𝑧) ≺  𝑞(𝑧) for all dominant 𝑞(𝑧) of (2.1.11) is called the best dominant 

Definition Miller and Mocanu (2000) let 𝛺 be a set in ℂ, 𝑞𝜖𝒬 and 𝑛𝜖ℕ ∕ {2}, the class of admissible function 𝜓𝑛[Ω, q] 
consists of those functions 𝜓: ℂ4 × ∆→ ℂ, which satisfy the following admissible conditions 

𝜓(𝑟, 𝑠, 𝑡, 𝑢: 𝑧) ∉ Ω 

 whenever  

𝑟 = 𝑞(𝑧), 𝑠 = 𝑘𝜁𝑞′(𝜁), Re(
𝑡

𝑠
+ 1) ≥ 𝑘𝑅𝑒 (

𝜁𝑞′′(𝜁)

𝑞′(𝜁)
) 

𝑅𝑒 (
𝑢

𝑠
) ≥ 𝑘2𝑅𝑒 (

𝜁2𝑞′′′(𝜁)

𝑞′(𝜁)
) 

 for 𝑧𝜖∆, 𝜁𝜖𝜕∆/ 𝐸(𝑞) and 𝑘 ≥ 𝑛 
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Definition let Miller and Mocanu (2003) Ω  be a set in ℂ , also let 𝑞𝜖ℋ[𝑎, 𝑛]  and 𝑞′(𝑧) ≠ 0, the class 𝜓′
𝑛

[ Ω, 𝑞]  of 

admissible functions consists of those functions 𝜓: ℂ4 × ∆→ ℂ that satisfy the following admissible conditions  

𝜓(𝑟, 𝑠, 𝑡, 𝑢: 𝑧)𝜖Ω 

Whenever 

𝑟 = 𝑞(𝑧) , 𝑠 =
𝑧𝑞′(𝑧),

𝑚
 Re(

𝑡

𝑠
+ 1) ≤

1

𝑚
𝑅𝑒 (

𝑧𝑞′′(𝑧)

𝑞′(𝑧)
+ 1) 

𝑅𝑒 (
𝑢

𝑠
) ≤

1

𝑚2
𝑅𝑒 (

𝑧2𝑞′′′(𝑧)

𝑞′(𝑧)
) 

 Whenever 𝑧𝜖∆, 𝜁𝜖𝜕∆ and 𝑚 ≥ 𝑛 ≥ 2 

Definition . Salagean 1981 introduced the following operators differential operators 

𝐷0𝑓(𝑧) =  𝑓(𝑧),  

𝑓(𝑧)𝐷1𝑓(𝑧) =  𝑧𝑓′(𝑧), …, 

𝐷𝑛𝑓(𝑧) =  𝐷(𝐷𝑛−1𝑓(𝑧)) 

(𝑛 ∈  𝑁 1,2,3, . . . ) Let ∆ 

1.3. Certain classes of analytic function 

Several authors considered classes defined by geometric conditions since the Bieber Beach conjecture was so complex 
to settle. Highly relevant among them are the classes of starlike convex functions, close to convex functions, class of 
close - to – convex functions, clase of 𝛼 - starlike and 𝛼 – convex functions and class Quasi-convex functions. 

1.3.1. The Class of Starlike functions 𝑺∗ 

A given domain Ω in the complex plane which includes the origin in called starshaped with respect to the oringin if there 
exist a point 𝑧0𝜖 Ω the point 𝜆𝑧0ϵ Ω for all real 𝜆 statisfying 0 ≤ 𝜆 ≤ 1 in other words, if Ω contains 𝑧0 then it eventually 
contains the line segment joining 𝑧0 to the origin. 

Therefore, a starlike function 𝑓(𝑧) is a function which is analytic and injective Δ which maps Δ conformally onto a star 
shaped domain so that 𝑓(0)= 0 and 𝑓′(0)≠ 0. 

Theorem 1.3.1 (Duren 1983) A function 𝑓(𝑧) is starlike function if and only  

𝑅𝑒 {
𝑧𝑓′(𝑧)

𝑓(𝑧)
} > 0 𝑓𝑜𝑟 |𝑧| < 1 ……………………               (1.3.1) 

A set 𝐻 in the complain plane ℂ is said to be starlike with respect to a point 𝑧0 ∈ 𝐻 if the linear segment joining 𝑧0 to 
every point 𝑧 ∈ 𝐻 lies entirely in 𝐻 i.e  

(1 − 𝜆)𝑧 + 𝜆𝑧0 ∈ 𝐻, 0 ≤ 𝜆 ≤ 1 

1.3.2. The Class of Convex functions 𝑪∗ 

Convex functions play an important role in many areas of mathematics such as optimization problem for determine 
minimum of a function and also in probability theory and calculus of variation. A set 𝐻 ∈ ℂ is said to be convex if 𝐻 ∈
𝑆∗ and the linear segmanet joining any two point of 𝐻 lies entirely in 𝐻, i.e  

(1 − 𝜆)𝑧1 + 𝜆𝑧2 ∈ 𝐻∀𝑧1, 𝑧2 ∈ 𝐻 0 ≤ 𝜆 ≤ 1 

Definition 1.3.1 ( Duren 1983)  
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Let 𝑓(𝑧) be a starlike function then 𝑓(𝑧) maps a unit disk (Δ) onto a convex domain, if and if and only if  

 𝑅𝑒 {1 +
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
} > 0 𝑓𝑜𝑟 |𝑧| < 1.                        (1.3.2) 

A function 𝑓 ;  (𝐴, 𝐵) ⟶ ℂ is convex if the function 𝜓(𝑧1, 𝑧2) =
𝑓(𝑧1)−𝑓(𝑧2)

(𝑧1−𝑧2)
= 𝜓(𝑧1, 𝑧2)is monotonically increasing that is 

for 𝑎 < 𝑠 < 𝑡 < 𝑢 < 𝑏 

𝑓(𝑡) − 𝑓(𝑠)

(𝑡 − 𝑠)
≤

𝑓(𝑢) − 𝑓(𝑠)

(𝑢 − 𝑠)
≤

𝑓(𝑢) − 𝑓(𝑡)

(𝑢 − 𝑡)
 

The analytic connection between the convex function and the starlike was discovered by Alexander in 1915.  

1.3.3. The Class of Close - to – Convex function  

The class of close to convex function was discovered by W. Kaplan 1952. Its an interesting class of univalent function 
which contains starlike functions with a simple geometric description.  

Definition 1.3.3 A function 𝑓(𝑧) which is analytic in an open unit disk is said to be close-to- convex function if there exist 
a convex function ℎ(𝑧) such that  

𝑅𝑒 {
𝑓′(𝑧)

ℎ′(𝑧)
} > 0 𝑓𝑜𝑟 |𝑧| < 1.                       (1.3.3) 

In this work we denote the class of close – to- convex functions by 𝐶∗∗ where 𝑓(𝑧) is normalized by usual conditions 
𝑓(0)  =  0, 𝑓(0) ≠ 0. its imperative to note that every starlike function is close to convex function and every convex 
function is obviously close to convex. Every starlike functions satisfies the condition 𝑓(𝑧) = ℎ′(𝑧)𝑧 and 

𝑅𝑒 {
𝑓′(𝑧)

ℎ′(𝑧)
} =  𝑅𝑒 {

𝑧𝑓′(𝑧)

𝑓(𝑧)
} > 0 𝑓𝑜𝑟 |𝑧| < 1 ……………( 1.3.4) 

Geometrically, close-to- convex functions are functions whose tangent to any given curve 𝑇(𝑟) = {𝑓(𝑟𝑒𝑖𝜃): 0 ≤ 𝜃 ≤

2𝜋} 𝑓𝑜𝑟 each  

𝑟 < 1 and never turn back onto itself as much as 𝜋 radian.  

Theorem 1.3.2 (Derek 1967) Every close-to convex function is univalent.  

Proof suppose 𝜑(𝑤) is the inverse of a convex function 𝑦(𝑥), and let 𝑋(𝑤) = 𝑓(𝜑(𝑤)), where 𝑋 (𝑤) is analytic is some 
convex domain  

𝑋′(𝑤) = 𝑓′(𝜑(𝑤))𝜑′(𝑤) =
𝑓′(𝑧)

𝑦′(𝑧)
 from 1.3.3 𝑅𝑒𝑋′(𝑤) > 0 

Suppose 𝑤1, 𝑤2 ∈ ℝ then 𝑤2 ≠ 𝑤1 ⟹ 𝑋 (𝑤2) ≠ 𝑋 (𝑤1) 

So that 𝑅𝑒 {
𝑋 (𝑤2)−𝑋 (𝑤1)

𝑤2−𝑤1
} = ∫ 𝑅𝑒𝑋′(𝑤1 + 𝑡(𝑤2 − 𝑤1))𝑑𝑡 > 0

1

0
 

Hence 𝑓(𝑧) = 𝑋(𝑦(𝑤)) is univalent in a unit disk Δ 

1.3.4. The Clase of 𝜶 - Starlike and 𝜶 – Convex functions  

Robertson introduced the classes of starlike and convex function of order 𝛼 denoted by 𝑠∗ (𝛼) and 𝑪∗( 𝛼 ) where 0 ≤
𝛼 ≤ 1. 

𝑠∗ (𝛼) =  {𝑓 ∈ 𝒜: 𝑅𝑒 (
𝑧𝑓′(𝑧)

𝑓(𝑧)
)} > 𝛼 0 ≤ 𝛼 ≤ 1. 𝑧𝝐Δ 
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𝑪∗( 𝛼 ) ={𝑓 ∈ 𝒜: 𝑅𝑒 (
𝑧𝑓′(𝑧)

𝑓′(𝑧)
)} > 𝛼 0 ≤ 𝛼 ≤ 1. 𝑧𝝐Δ 

The starlike and convex function of order 𝛼 satisfy the following conditions 𝑆∗(0)= 𝑠∗ and𝑪∗(0) = 𝑪∗ where 𝑠∗ an d 𝑪∗ 
have their unsual meanings.  

1.3.5. The Class Quasi-Convex functions. 

In 1980 Nooret-al introduced the class of Quasi-convex functions denoted by 𝑘  defined by 𝑅𝑒 (
(𝑧𝑓′(𝑧))′

𝑔′(𝑧)
) > 0  for 

𝑔(𝑧)𝝐𝑪∗ 𝒂𝒏𝒅 𝑧𝝐Δ. 

1.4. Subordination  

let the functions ℎ1(𝑧) and ℎ2(𝑧) be regular in a unit disk Δ and ℎ2(𝑧) is univalent in |𝑧| < 1. Let Ω1 and Ω2 denote the 
domains in the 𝑤 −plane onto which the unit disk |𝑧| < 1  is mapped by 𝑤 = ℎ1(𝑧)  and 𝑤 = ℎ2(𝑧)  respectively. If 
ℎ1(0) = ℎ2(0)  and Ω1  is contained in Ω2  we say that ℎ1(𝑧)  is subordinate to ℎ2(𝑧) . Symbolically we write, ℎ1(𝑧) ≺
 ℎ2(𝑧). 

Miller and Macanu (2000) let 𝑓 and 𝐹 be members of 𝓗. The function 𝑓 is subordinate to 𝐹, write 𝑓 ≺  𝐹 or 𝑓(𝑧) ≺  𝐹(𝑧) 

if there exists a function 𝑤 analytic inΔ with 𝑤(0) = 0 and |𝑤(𝑧)| < 1 and such that 𝑓(𝑧) = 𝐹(𝑤(𝑧)). if 𝐹 is univalent, 

then 𝑓 ≺  𝐹 if and only if 𝑓(0) = 𝐹(0) and 𝑓(Δ) ⊂ 𝐹(Δ). 

1.4.1. The General hypergeometric function 

Given two analytic functions 𝑔(𝑧) = 𝑧𝑝 + ∑ bk
∞
𝑘=𝑝+1 zk and 

ℎ(𝑧) = 𝑧𝑝 + ∑ ck
∞
𝑘=𝑝+1 zk for 𝑧 ∈ Δ and 𝑝 ∈ ℕ the Hadamard product (or convolution) of 𝑔 and ℎ is defined by  

(𝑔 ∗ ℎ)(ℎ) = 𝑧𝑝 + ∑ bkck
∞
𝑘=𝑝+1 zk  for 𝛼𝑖 ∈ ℂ where (𝑖 = 1,2,3 … , 𝑞) and 𝛽𝑗𝜖ℂ where (𝑗 = 1,2,3 … , 𝑟), {𝛽 ≠ 0, −1, −2, … } 

the generalized hypergeometric function  

𝐹(𝛼1𝑞
𝑟 , 𝛼2, … , 𝛼𝑞: 𝛽1, 𝛽2, … , 𝛽𝑟: 𝑧) is defined by infinite series  

𝐹(𝛼1𝑞
𝑟 , 𝛼2, … , 𝛼𝑞: 𝛽1, 𝛽2, … , 𝛽𝑟: 𝑧)= ∑

(𝛼1)n,…,(𝛼𝑞)nzn

(𝛽1)n,…,(𝛽𝑞)nn!

∞

𝑛=0

 ………………..         (2.1.1) 

(𝑞 ≤ 𝑟 + 1, 𝑞, 𝑟 ∈ ℕ0 = ℕ ∪ {0}: 𝑧 ∈ Δ), where (𝑒)𝑛 is the Pochamer symbol or (shifted factorial which is expressed in 
terms of Gamma function by  

(𝑒)𝑛 =
Γ(𝑒+𝑛)

Γ(𝑒)
= {

1 𝑖𝑓 𝑛 = 0 

𝑒(𝑒 + 1) … (𝑒 + 𝑛 − 1) 𝑖𝑓 𝑛 ∈ ℕ, 𝑒 ∈ ℂ
                                                 (2.1.2) 

1.4.2. Integral Operators  

Let 𝑓𝜖ℋ[0, Ω], that is 𝑓 is analytic in Δ with 𝑓(𝑧) = 𝑎𝑛𝑧𝑛 + 𝑎𝑛+1𝑧𝑛+1 + ⋯ 

The Alexander operator[43] is defined by 

𝐴[𝐹](𝑧) = ∫
𝑓(𝑡)𝑑𝑡

𝑡

𝑧

0
.                                                  (2.1.3) 

The Libera operator is defined by  

𝐿[𝐹](𝑧) =
2

𝑧
∫ 𝑓(𝑡)𝑑𝑡

𝑧

0
.                                           (2.1.4) 

 Bernardi operator which generalizes the Libera operator is defined by 

𝐿𝑟[𝐹](𝑧) =
𝑟+1

𝑟
∫ 𝑓(𝑡)𝑡𝑟−1𝑑𝑡

𝑧

0
2.1.5 
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𝑟 = 1,2,3 … where each of these operators is well defined on ℋ[0, Ω] and maps 𝑓 𝑖𝑛𝑡𝑜 ℋ[0, Ω] 

1.4.3. Functions with positive real part 

Let 𝑏 denotes the class of functions 

𝑃(𝑧) = 1 + 𝑏1𝑧 + 𝑏1𝑧2 + ⋯, which are regular in Δ, then 𝑃(𝑧) has positive real part is 𝑅𝑒{𝑃(𝑧)} > 0 in Δ. 

THEOREM 2.1.1 

let the functions ℎ1(𝑧) and ℎ2(𝑧) be defined as given in (2.1.0) and  

ℎ1(𝑧) ≺  ℎ2(𝑧) in Δ, then for all 𝑞 > 0 𝑎𝑛𝑑 0 < 𝑟 < 1 

∫ |ℎ1(𝑟𝑒𝑖𝜃)|
𝑞

≤
2𝜋

0
∫ |ℎ2(𝑟𝑒𝑖𝜃)|

𝑞2𝜋

0
.                            (2.1.4) 

THEOREM 2.1.2 

 If 𝑓 ∈ 𝒜, then the following sharp implications hold  

𝑓′(𝑧) ≺  𝑝′(𝑧) 

⇑⇓ 

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
≺

𝑧𝑝′′(𝑧)

𝑝′(𝑧)

𝑓(𝑧)

𝑧
≺

𝑝(𝑧)

𝑝
 

⇓⇑ 

𝑧𝑓′(𝑧)

𝑓(𝑧)
≺

𝑧𝑝′(𝑧)

𝑝(𝑧)
 

2. Certain properties of meromorphic function 

A meromorphic function is a function for each point in the domain has a unique value in the range (single- valued 
function) that is analytic in all but possibly a discrete subset of its domain and at some singular points whose values 
must tend to infinity. 

For integer 𝑝 ≥ 0, denote by 𝛴𝑝the class of meromorphic functions defined in ∆≡ ∆\{0}, which are of the form 

𝑓(𝑧) =
1

𝑧
+ 𝑎𝑝𝑧𝑝 + 𝑎𝑝+1𝑧𝑝+1 + ⋯ … … … ….             (3.1.1) 

And let 𝛴 = 𝛴0. A function 𝑓𝜖𝛴 is said to be starlike if it is univalent and the compliment of 𝑓(Δ) is starlike with respect 
to the origin. Denote by 𝛴∗ the class of such functions. If 𝑓𝜖𝛴, then it is well known that 𝑓𝜖𝛴∗ if and only if  

Re{
−𝑧𝑓′(𝑧)

𝑓(𝑧)
} > 0, for 𝑧𝜖∆ 

We note that 𝑓𝜖𝛴∗ implies 𝑓(𝑧) ≠ 0 for 𝑧𝜖∆. 

For 𝛽 < 1, let 

∑ (∗
𝑝 𝛽) = {𝑓(− ∑ 𝑝): 𝑅𝑒 [

−𝑧𝑓′(𝑧)

𝑓(𝑧)
] > 𝛽, 𝑧𝜖∆}…………….( 3.1.2) 

In addition, let 𝛴∗(𝛽) = ∑ (∗
0 𝛽) and ∑ (∗

𝑝 0). Note that for 𝛽 < 0 functions in this class need not be univalent in Δ. 
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Firstly, we will use the theory of differential subordinations to obtain relevant conditions for 𝛴𝑝  to be starlike 

functions.In the second segment we will use the same theory to study the results of certain integral operators on 
subclass of 𝛴𝑝 

2.1. Lemma 3.1.1 

 Let 𝑛 be a positive integer and 𝛽 be real, with 0≤ 𝛽 < 𝑛. let 𝑞 be analytic in ∆, with 𝑞(0) = 0 and 𝑞′(0) ≠ 0 and  

𝑅𝑒
 𝑧𝑞′′(𝑧)

𝑞′(𝑧)
+ 1 >

𝛽

𝑛
 ………………….. (3.1.3) 

Define the function ℎ(𝑧) as  

ℎ(𝑧) = 𝑛𝑧𝑞′(𝑧) − 𝛽𝑞(𝑧) …………………… ( 3.1.4) 

if 𝑝𝜖[0, 𝑛] and  

𝑧𝑝′(𝑧) − 𝛽𝑝(𝑧) ≺ 𝑛𝑧𝑞′(𝑧) − 𝛽𝑞(𝑧) = ℎ(𝑧). ……………… (3.1.5) 

Then, 𝑝(𝑧) ≺  𝑞(𝑧) and this result is sharp. 

Proof 

Condition (3.1.3) implies that 𝑞 is convex. From (3.1.3) and (3.1.4) we obtain  

Re
ℎ′(𝑧)

𝑞′(𝑧)
= 𝑛 [

 𝑧𝑞′′(𝑧)

𝑞′(𝑧)
+ 1] − 𝛽, which shows that ℎ(𝑧) is close-to-convex univalent function. 

We will use a subordination chain type argument to prove this lemma and without loss of generality, we can assume 
that 𝑞(𝑧) satisfies the conditions of the lemma on a closed disk Δ. 

The function 𝐿(𝑧, 𝑡) = (𝑛 + 𝑡)𝑧𝑞′(𝑧) − 𝛽𝑞(𝑧) …………………(3.1.6) 

Is analytic in Δ for all 𝑡 ≥ 0, and is continuously differentiable on [0,∞) for all 

𝑧𝜖∆. A simple calculation yields 𝑎1(𝑧) =
𝜕𝐿

𝜕𝑧
(0, 𝑡) = (𝑛 + 𝑡 − 𝛽)𝑞′(0), hence 𝑎1(𝑧) ≠ 0 and lim

𝑡→∞
|𝑎1(𝑧)| = ∞. From (3.1.4) 

we obtain  

𝑅𝑒 [
𝑧(𝜕𝐿\𝜕𝑧)

𝜕𝐿\𝜕𝐿
] = (𝑛 + 𝑡)𝑅𝑒 [

 𝑧𝑞′′(𝑧)

𝑞′(𝑧)
+ 1] − 𝛽 > 0 ; 𝑧𝜖∆ and 𝑡 ≥ 0. ………………… (3.1.7) 

𝐿(𝑧, 𝑡) is a subordination chain and so we have 𝐿(𝑧, 𝑡1) ≺ 𝐿(𝑧, 𝑡2), where 0≤ 𝑡10≤ 𝑡2. From(3.1.4) and (3.1.5) we have 
𝐿(𝑧, 0) = ℎ(𝑧). Hence, 𝐿(𝜁, 𝑡) ∉ ℎ(Δ), for|𝜁| = 1, and 𝑡 ≥ 0. 

Now assume that 𝑝 is not subordinate to 𝑞 and there exist a point 𝑧0𝜖Δ, 𝜁0𝜖𝜕∆, and and 𝑚 ≥ 1 

such that  

𝑧0𝑝′(𝑧0) − 𝛽𝑝(𝑧0) = 𝑚𝜁0𝑞′(𝜁0) − 𝛽𝑞(𝜁0) = 𝐿(𝜁0, 𝑚 − 𝑛) ∉ ℎ(Δ). 

Since this contradicts (3.1.5) we have 𝑝(𝑧) ≺  𝑞(𝑧). The function 𝑝(𝑧) = 𝑞(𝑧𝑛). 

Shows that this subordination is sharp. 

2.2. THEOREM 3.1.1 

 let 𝑛 be a positive integer and let 𝑞 be analytic function in Δ, with 𝑞(0) = 0 and 𝑞′(0) ≠ 0 and  

 𝑧𝑞′′(𝑧)

𝑞′(𝑧)
+ 1 >

1

𝑛+1
 , 
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Define the function ℎ(𝑧)as 

ℎ(𝑧) ≡ (𝑛 + 1)𝑧𝑞′(𝑧) − 𝑞(𝑧), ……………………..( 3.1.7) 

if 𝑓𝜖𝛴𝑝, then  

𝑧2𝑓′(𝑧) + 1 ≺ ℎ(𝑧) ⇒ 𝑧𝑓(𝑧) − 1 ≺ 𝑞(𝑧) and this result is sharp. 

Proof 

Let 𝑝(𝑧) = 𝑧𝑓(𝑧) − 1 

Then 𝑝𝜖[0,n+1] and 𝑧2𝑓′(𝑧) + 1 = 𝑧𝑝′(𝑧) − 𝑝(𝑧) 

The conclusion of the theorem follows by applying lemma 5.1.1 with 𝛽 = 1 and replacing 𝑛 by 𝑛 + 1 

Corollary 3.1.1 If 𝑓𝜖 𝛴𝑝 with 𝑝 ≥ 1, and if 𝑀 > 0 then |𝑧2𝑓′(𝑧) + 1| < 𝑀 ⇒  |𝑧𝑓(𝑧) − 1| <
𝑀

𝑛
 and this result is sharp. 

Proof 

If we take 𝑞(𝑧) =
𝑀𝑧

𝑛
, then (3.1.7) becomes ℎ(𝑧) = 𝑀𝑧 and the result follows from theorem 3.1.1 . 

2.3. Starlikeness of a meromorphic function 

Al-Amiri and Mocanu, (1995) proved that if 𝑓𝜖𝛴𝑝  and |𝑧2𝑓′(𝑧) + 1| < 1  then 𝑓  is univalent in Δ . By applying our 

previous results we can obtain a similar simple criterion for starlikeness of a meromorphic function. 

2.3.1. THEOREM 3.2.1 

1 If 𝑓𝜖𝛴𝑝 with 𝑛 ≥ 1, then 

|𝑧2𝑓′(𝑧) + 1| <
𝑛

√𝑛2 + 1
⇒ 𝑓𝜖𝛴𝑝

∗ 

Proof  

Let 0< 𝑀 ≤
𝑛

√𝑛2+1
 , suppose 𝑓 𝜖 𝛴𝑝 satisfies  

|𝑧2𝑓′(𝑧) + 1| < 𝑀. …………………. (3.2.2) 

If 𝑝(𝑧) = 𝑧𝑓(𝑧) then by corollary 3.1.1  

|𝑝(𝑧) − 1| <
𝑀

𝑛
< 1. …………………..(3.2.3) 

Which implies 𝑝(𝑧) ≠ 0. Let 𝑝(𝑧) =
−𝑧𝑓′(𝑧)

𝑓(𝑧)
 then, 𝑝 𝜖 [0,n+1] and (3.2.2) can be written in form  

|𝑃(𝑧). 𝑝(𝑧) − 1| < 𝑀. ………………….. ( 3.2.4) 

We claim that this inequality implies Re 𝑝(𝑧) > 0, for all 𝑧 𝜖 ∆. 

If this is false, then there exists a point 𝑧0 𝜖∆ such that 𝑝(𝑧0) = 𝑖𝜌, we will show that at such a point the negation of 
condition (3.2.4) holds 

|𝑃(𝑧)𝑖𝜌 − 1| ≥ 𝑀. ……………….. (3.2.5) 

That is for real 𝜌. This inequality is equivalent to |𝑝(𝑧0)|2𝜌2 + 2(𝐼𝑚)𝑝(𝑧0)𝜌 + 1 − 𝑀2 ≥ 0. And this holds for all real 𝜌 
if and only if  
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(𝐼𝑚(𝑧0))2 ≤(1-𝑀2)|𝑝(𝑧0)|2 . ………………………(3.2.6) 

A simple geometric argument shows that the inequality (3.2.4) implies that  

(𝐼𝑚(𝑧0))2 ≤
𝑀2

𝑛2
|𝑝(𝑧0)|2. 

Because of the definition of M given in (3.2.1) this forces inequalities (3.2.5) and (3.2.6) to hold. Thus we have a 
contradiction of (3.2.4) therefore Re 𝑝(𝑧) > 0 and 𝑓𝜖𝛴∗ . 

Example 1 

Let 𝑓(𝑧) =
1

𝑧
 +𝜆(𝑧 − 𝑠𝑖𝑛𝑧) in this case 𝑓𝜖 𝛴3 and  

|𝑧2𝑓′(𝑧) + 1| = |𝜆||1 − 𝑐𝑜𝑠𝑧| = 2|𝜆| |𝑠𝑖𝑛ℎ2 (
𝑧

2
)| < 2|𝜆| |𝑠𝑖𝑛ℎ2 (

1

2
)| 

. Hence by theorem 3.2.1, if  

|𝜆| =
6𝑒

(𝑒 − 1)2√10
= 1.746 …, 

Then 
1

𝑧
+  𝜆(𝑧 − 𝑠𝑖𝑛𝑧)𝜖𝛴∗

3 

2.3.2. Lemma 3.2.1 

let 𝑛 be a positive integer, 𝑛 ≥ 3,and let 𝑝𝜖𝓗[1, 𝑛] satisfy 

𝑝(𝑧) ≺ 𝑅𝑛(𝑧) ≡
1+𝑧

1−𝑧
−

2𝑛𝑧

1−𝑧2 and satisfies the differential equation 

−𝑧𝑝′(𝑧) +  𝑃(𝑧). 𝑝(𝑧) = 1 

Then Re 𝑝(𝑧) > 0. 

From its definition we see that 𝑅𝑛 is equivalent in ∆, 𝑅𝑛(0) = 1 and 𝑅𝑛(∆) is the complex plane with slits along the half-

lines Re𝜔 = 0 and |𝐼𝑚{𝜔}| ≥ √𝑛(𝑛 − 2) .  

2.3.3. THEOREM 3.2.2 

 Let 𝑓𝜖𝛴𝑝, if 𝑛 ≥ 2 and 𝑧𝑓(𝑧) ≠ 0. 

 if − [
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
+ 1] ≺

1+𝑧

1−𝑧
−

2(𝑛+1)𝑧

1−𝑧2  then 𝑓𝜖 𝛴𝑝
∗ . 

Proof  

If we let 𝑝(𝑧) =
−𝑓(𝑧)

[𝑧𝑓′(𝑧)]
 , then 𝑝(𝑧) ≠ 0, 𝑝𝜖[0,n+1] and we have 

𝑧𝑝′(𝑧)

𝑝(𝑧)
= −

1

𝑝(𝑧)
− [

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
+ 1]  if we set 𝑝(𝑧) = − [

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
+ 1]  , then we deduce that 𝑝𝜖 𝓗[0,n+1] and −𝑧𝑝′(𝑧) +

 𝑃(𝑧). 𝑝(𝑧) = 1 

Applying (3.2.1) we obtain 

Re 𝑝(𝑧) > 0 and Re[
1

𝑝(𝑧)
] > 0, and hence  𝑓𝜖𝛴𝑝

∗  
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2.4. Some analogous results for meromorphic functions 

Let us consider the operator defined by  

𝐼𝛾[𝑓](𝑧) ≡
𝛾

𝑧𝛾+1 ∫ 𝑓(𝑡)𝑡𝛾𝑑𝑡
𝑧

0
= 𝛾 ∫ 𝑓(𝑢, 𝑧)𝑢𝛾𝑑𝑢

1

0
 ……………………….. ( 3.3.1) 

With 𝛾 ∈ ℂ and Re 𝛾 ≥ 0. It is easy to see that 𝐼𝛾 : 𝛴 → 𝛴. 

2.4.1. THEOREM 3.3.1 

let 0≤ 𝛼 < 1 and 0< 𝛾 ≤ 1 if 𝑓𝜖𝛴∗(𝛼) and 𝐼𝛾[𝑓](𝑧)𝜖𝛴∗(𝛽) where  

𝛽 =
1

4
[2𝛼 + 2𝛾 + 3 − √[2(𝛾 − 𝛼) + 1]2 + 8𝛾] ………………………( 3.3.2) 

Proof 

 The conditions 𝛼 < 1 and 0< 𝛾 are needed to imply that 𝛽 < 1. let 𝑓𝜖𝛴∗(𝛼) and let 𝐹 = 𝐼𝛾[𝑓] where 𝐼𝛾  is defined by 

(3.3.1). We shall first prove that 𝐹(𝑧) ≠ 0 for 𝑧𝜖∆. this will eliminate the difficulty referred to above since 𝑓𝜖𝛴∗(𝛼), we 

have 𝑓(𝑧) ≠ 0 for 𝑧𝜖∆ and a simple computation shows that 𝑔 =
1

𝑓
𝜖𝑆∗(𝛼) for 𝛼 < 1. If we define ℎ(𝑧) = 𝑧 [

𝑔(𝑧)

𝑧
]

1

(1−𝛼)
. 

Then, ℎ(𝑧)𝜖𝑆∗. Apply Goluzin’s subordination result we obtain [
ℎ(𝑧)

𝑧
]

1

2
≺

1

1+𝑧
. 

From the relation between ℎ, 𝑔 𝑎𝑛𝑑 𝑓 we obtain 
ℎ(𝑧)

𝑧
≺ (1 + 𝑧)2(𝛼−1) and 𝑧𝑓(𝑧) ≺ (1 + 𝑧)2(𝛼−1) and since 0 ≤ 𝛼 < 1, we 

have 𝑧𝑓(𝑧) ≺ (1 + 𝑧)2  combining this with Min
|𝑧|=1

𝑅𝑒(1 + 𝑧)2 = −
1 

2
 We deduce that Re [𝑧𝑓(𝑧)] > −

1

2
 . Differentiating 

(3.3.1) we obtain  

(𝛾 + 1)𝐹(𝑧) + 𝑧𝐹′(𝑧) = 𝛾𝑓(𝑧). …………………..(3.3.5) 

Let 𝑝(𝑧) = 𝑧𝐹(𝑧), then 𝑝𝜖[1,1] and (3.3.5) becomes 𝛾𝑝(𝑧) + 𝑧𝑝′(𝑧) = 𝛾𝑧𝑓(𝑧), hence, we have  

Re𝜓(𝑝(𝑧), 𝑧𝑝′(𝑧)) = 𝑅𝑒 [𝑝(𝑧) +
𝑧𝑝′(𝑧)

𝛾
+

1

2
] > 0. ………………..(3.3.6) 

Where 𝜓(𝑟, 𝑠) = 𝑟 +
𝑠

𝑟
+

1

2
. 

To show that Re𝑝(𝑧) > 0 it follows immediately since 0< 𝑟 < 1,  

 Implies that Re≤ 𝜓(𝑖𝜌, 𝜎) = 𝑅𝑒 [𝑖𝜌 +
𝜎

𝛾
+

1

2
]

1+𝜌2

2𝛾
+

1

2
≤ 0, ………………………..(3.3.7) 

When 𝜎 ≤ −
(1+𝑝2)

2
, for 𝑝𝜖ℝ. Hence from (3.3.6) we deduce that Re𝑝(𝑧) > 0, which implies 𝐹(𝑧) ≠ 0 for 𝑧𝜖∆ we next 

determine 𝛽 such that 𝐹 ∈ 𝛴∗(𝛽). If we define 𝑝 by 

−𝑧𝐹′(𝑍)

𝐹(𝑧)
= (1 − 𝛽)𝑝(𝑧) + 𝛽 . ………………… (3.3.8) 

Then 𝑝𝜖[1,1] since𝑓 ∈ 𝛴∗(𝛼), by differentiating (3.3.5) we obtain 

Re𝜓(𝑝(𝑧), 𝑧𝑝′(𝑧)) > 0 where 𝜓(𝑟, 𝑠) = (1 − 𝛽)𝑟 + 𝛽 +
(1+𝛽)𝑠

𝛾+1+𝛽−(1−𝛽)𝑟
 

If 𝛽 ≤ 𝛽(𝛼, 𝛾)  where 𝛽(𝛼, 𝛾)  is given by (3.3.2). Using this result in (3.3.8) together with 𝛽 < 1  shows that 
𝐼𝛾[𝑓](𝑧)𝜖𝛴∗(𝛽). 
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2.4.2. THEOREM 3.3.2 

Macun, (1996) let 𝛼 < 1,  0 < 𝛾, 𝑓 ∈ 𝛴∗(𝛼)  and 𝐹 = 𝐼𝛾[𝑓] , where 𝐼𝛾  is defined by (3.3.1). IF 𝐹(𝑧) ≠ 0  for 𝑧𝜖∆,  then 

𝐼𝛾[𝑓](𝑧)𝜖𝛴∗(𝛽) where 𝛽= 𝛽(𝛼, 𝛾) is defined by (3.3.2) if 𝛼 =
−1

2(𝛾+1)
 in this theorem, then 𝛽(𝛼, 𝛾) = 0 and we obtain the 

following corollary.  

Corollary 3.3.1 let 𝑓 ∈ 𝛴 with Re[
𝑧𝑓′′(𝑧)

𝑓′(𝑧)
] <

1

2(𝛾+1)
𝐹 = 𝐼𝛾[𝑓], where 𝐼𝛾  is defined by (3.3.1) and IF 𝐹(𝑧) ≠ 0 for 𝑧𝜖∆, then 

𝐼𝛾[𝑓]𝜖𝛴∗. 

2.4.3. THEOREM 3.3.3 

 let 0≤ 𝛼 < 1 and 0< 𝛾 ≤ 1 if 𝑓𝜖𝛴1
∗(𝛼) then 𝐼𝛾[𝑓](𝑧)𝜖𝛴1

∗(𝛽) where  

𝛽= 𝛽(𝛼, 𝛾) =
1

2
[𝛼 + 𝛾 + 2 − √(𝛾 − 𝛼)2 + 4𝛾]   .                                                                (3.3.9) 

2.4.4. THEOREM 3.3. 

let 𝛼 < 1 and 0< 𝛾 if 𝑓𝜖𝛴1
∗(𝛼) and 𝐹 = 𝐼𝛾[𝑓], where 𝐼𝛾  is defined by (3.3.1) and IF 𝐹(𝑧) ≠ 0 for 𝑧𝜖∆, then 𝐼𝛾[𝑓](𝑧)𝜖𝛴1

∗(𝛽) 

where 𝛽(𝛼, 𝛾) is given by (5.3.9) if 𝛼 =
1

(𝛾+1)
, then 𝛽(𝛼, 𝛾) = 0. 

Example 2 

Let 𝑓(𝑧) =
(1+𝑧2)1−𝛼

𝑧
 with 

−1

(𝛾+1)
≤ 𝛼 < 1 and 0< 𝛾 ≤ 2. This function satisfies 

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
=

1+(2𝛼−1)𝑧2

1+𝑧2  and 𝑓𝜖𝛴1
∗(𝛼). in this case  

𝐹(𝑧) = 𝐼𝛾[𝑓](𝑧) ≡
𝛾

𝑧𝛾+1
∫ 𝑓(1 + 𝑡2)1−𝛼𝑡𝛾−1𝑑𝑡

𝑧

0

 

From theorem(3.3.4) we deduce that 𝐹𝜖𝛴1
∗(𝛽)  with 𝛽 = 𝛽(𝛼, 𝛾) ≥ 0 . In particular, this shows that 𝐹(𝑧)  is starlike 

univalent 

3. Conclusion 

Geometric Function Theory (GFT) stands as a classical field within mathematics, yet it continually evolves, finding new 
applications across various disciplines including modern classical physics and beyond. Throughout this study, we have 
delved into several fundamental concepts within GFT, focusing particularly on analog results related to meromorphic 
functions and the characterization of starlikeness among these functions. Our investigation has yielded significant 
contributions to the existing body of literature in GFT. By exploring analog results of meromorphic functions, we have 
extended the understanding of their behaviors and properties, particularly in contexts where traditional analytic 
functions might not suffice. The study of starlikeness, which concerns the convexity of certain domains associated with 
meromorphic functions, has provided deeper insights into the geometric aspects of these functions. 

Moreover, our findings not only extend but also refine the results documented in previous studies. Through rigorous 
analysis and exploration of various mathematical techniques, we have enhanced the theoretical framework surrounding 
GFT, thereby contributing to a more comprehensive understanding of its applications. 

Looking forward, the applications of GFT continue to expand into new and diverse areas, driven by its foundational 
principles and the insights gained from studies such as ours. As GFT intersects with fields like physics, engineering, and 
computer science, its theoretical underpinnings and practical implications become increasingly relevant and valuable. 

Our study underscores the enduring significance of Geometric Function Theory in mathematics and its ongoing 
relevance in advancing knowledge across disciplines. By deepening our understanding of analog results and 
starlikeness in meromorphic functions, we contribute to the rich tapestry of mathematical inquiry while paving the way 
for further exploration and application in both theory and practice. 
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