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Abstract 

While containerization and Kubernetes have made cloud-native application deployment almost ubiquitous, Java-based 
applications are faced with unique challenges when running in the containerized world. There is great scalability, 
portability, and resource efficiency powered by Kubernetes; however, Java’s memory management and garbage 
collection processes often make it a performance bottleneck. In this study, we investigate how to best optimize 
containerized Java-based applications in Kubernetes environments. 

Baseline and optimized setup configurations were compared in a controlled experimental method. The key optimization 
strategies were: JVM tuning, resource allocation policies, and using Kubernetes native tools such as horizontal pod 
autoscaling. Under various traffic conditions, performance metrics—response time, throughput, and resource 
utilization—were benchmarked. The results showed significant improvements: Throughput increased by 30%, CPU and 
memory utilization dropped by 15 % and 18%, respectively, and response time decreased by 25%. 

But there is a takeaway that will show enterprises that when it comes to scaling and handling resources, Kubernetes is 
better than traditional VM-based deployments, and there are actionable insights from those findings. Future research 
could study advanced scaling techniques and production environments larger than those of conventional PICs.  

Keywords:  Containerized Java applications; Kubernetes ecosystems; JVM optimization; cloud-native performance; 
resource efficiency; horizontal pod autoscaling 

1. Introduction

Cloud-native technologies are rapidly changing the way enterprise applications are created, deployed, and managed. 
Among these technologies, containerization has been the leading technology with improved scalability, portability, and 
software delivery. However, in recent years, even Java-based applications have had to adapt to containerized 
environments, and modernizing legacy systems and improving performance has become an important aspect of Java-
based applications in the modern world. These benefits are further bolstered by layering the automating deployment, 
containerized applications managed and scaled on Kubernetes, the leading container orchestration platform, which 
enables organizations to fully take advantage of their cloud infrastructures. Among these technologies, containerization 
has been the leading technology with improved scalability, portability, and software delivery. However, there are 
challenges when running Java applications inside of a Kubernetes ecosystem. In containerized environments, Java’s 
memory management, garbage collection processes, and JVM-specific tuning frequently lead to inefficiencies. Elements 
of these inefficiencies can translate to greater resource consumption, slower response time, and suboptimal throughput, 
counter to typical performance benefits that come from containerizing. As enterprises move towards microservices 
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architectures, and support Java as the language of choice, the performance bottlenecks addressed by these techniques 
become critical to competitive Java application performance in heavily dynamic, constrained environments. 

The work presented in this paper examines the use of containerization in improving the performance of Java-based 
applications residing in Kubernetes ecosystems. The problem it seeks to solve is to deliver a thorough exploration of 
the difficulties involved in running Java applications in Kubernetes and to propose a suite of optimized strategies and 
best practices for tackling these issues. Presented are solutions grounded in practical experimentation and performance 
benchmarking, providing insight into how the efficiency in Java applications can be achieved consistently, coupled with 
their high availability and scalability. This paper expands the body of knowledge of containerized Java applications by 
providing a detailed analysis of these application optimization techniques, and they offer actionable guidance to 
developers and system architects who wish to use Kubernetes to develop high-performance deployments. 

 

Figure 1 Key Aspects of Java Optimization 

This research develops a methodology for algorithmically evaluating the performance of Java-based applications 
running in Kubernetes ecosystems, with a particular focus on containerization and performance optimization. The study 
is based on practical experimentation and places emphasis on benchmarking real-world application performance. 

1.1. System Architecture 

In this study, the system architecture in use is a containerized Java application running in a Kubernetes cluster. For this 
experiment, an application that’s a typical enterprise Java application that was developed with the Spring Boot 
framework was chosen. But it will package the Java application into a portable image with Docker, so that the 
containerized app fits production-level scenarios, and the image can be deployed and monitored in Kubernetes 
environments. They deployed both stateless and stateful services in separate pods in a multi-node cluster that simulated 
a cloud-native infrastructure. 

1.2. Performance 

The Java application was then subjected to several performance optimization techniques and their impact to overall 
performance was measured on a Kubernetes environment. The optimizations focused on three primary areas: Scaling 
with Kubernetes-native tools and resource allocation for Java Virtual Machine (JVM) configuration. 

1.3.  JVM Tuning  

In the first area of optimization, we set up to optimize variables such as JVM-related settings to optimize the give and 
take of system memory. Alternatively, this was done to reduce JVM garbage collection overhead. Heap size, the garbage 
collection algorithm, and thread configuration parameters were adjusted.  The settings for these were fine-tuned to get 
the lowest latency and to minimize the over-allocation of resources inside the containerized environment. 
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1.4. Resource Allocation 

CPU and memory limits of each container were defined within the Kubernetes pods, to avoid resource contention and 
maintain optimized application performance. It provided enough resources to the Java application instances without 
the risk of over-provisioning or under-provisioning. Horizontal pod autoscaling was also configured to dynamically 
scale the number of pods based on the use of resources and load on traffic, keeping the service ‘on’ during varying 
demands. 

1.5.  Kubernetes-Native Tools 

To monitor and manage application performance, several tools were integrated in the system which are Kubernetes 
native. Real-time metrics (like CPU Usage, Memory consumption, and Response time) were collected using Prometheus. 
Performance trends were visualized in Grafana with these metrics helping to identify areas of optimization. 

1.6. Benchmarking Interactive Graphics Setup 

An experimental setup was achieved in a series of benchmark tests to examine the effectiveness of the proposed 
optimizations. Topics include response time, throughput, and resource utilization, and the key performance metrics are 
evaluated. Testing was conducted under two conditions: Compared with a baseline setup (without any optimizations) 
and an optimized setup (accounting for JVM tuning and resource allocation strategies). Under light and heavy traffic 
conditions, each setup was tested to simulate different production workloads and evaluate system scalability. 

The maintained Kubernetes cluster had multiple nodes running a set of application instances (pods). Each configuration 
was benchmarked to see how its performance differs in response time, throughput, and resource consumption 
compared to the other configurations. In addition, the resource utilization of each pod was measured to characterize 
the resource allocation strategies’ efficiency. 

1.7. Virtual Machine Deployment Comparison 

The performance of the containerized Java application in comparison with a traditional virtual machine (VM)-based 
deployment was used to highlight the benefits of containerization and Kubernetes orchestration. By comparing with 
this, we were able to deeply study the scalability, used resources, as well as the whole application performance it gave 
us. 

Table 1 Experimental Setup and Optimization Techniques 

Aspect 

 

Details Tools/Technologies Proposed/Goal 

System 
Architecture 

 

Java application (Spring boot) 
containerized and deployed in 
a locally distributed 
Kubernetes cluster with multi 
node setup. 

Docker, Kubernetes 

 

To deploy and manage Java 
application within a scalable, 
cloud native environment. 

 

Containerization 

 

Java application hosted in 
portable and scalable 
containers. 

Docker, Kubernetes 

 

To provides an easy way to 
deploy and orchestrate Java 
application instances across 
nodes in an efficient way. 

JVM Tuning 

 

 

JVM property optimizations, 
such as heap size, garbage 
collection algorithm and 
thread settings. 

 

G1 Garbage Collector (G1GC) 
is a Java Virtual Machine 
(JVM). 

 

To reduces latency, memory 
management optimization, 
and application performance 
inside containers. 

Resource 
Allocation 

 

 

Native CPU and memory limits 
for containers, dynamic 
scaling of containers through 
horizontal pod autoscaling. 

Pod Limits, and Horizontal 
Pod Autoscaling all with 
Kubernetes. 

To provide efficient resources 
utilization and system 
scalability under varied loads. 
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Kubernetes-
Native Tools 

 

Real time metric collection 
and monitoring as well as 
performance analysis. 

 

Data visualization: Grafana, 
metrics collection: 
Prometheus (Metrics 
Collection). 

It is used to monitor 
application performance, 
resources usage and visualize 
performance trends. 

Benchmark 
Metrics 

Response time measured, 
throughput measured, and 
resource utilization (CPU, 
memory). 

Apache JMeter, Prometheus, 
and Grafana 

 

 

Evaluates the internal gains 
and the impact of 
optimization on reduction of 
application runtime 

Test Conditions 

 

Both light and heavy traffic 
testing so in a manner of 
speaking, real life. 

 

Apache JMeter, Load Testing 
Tools etc. 

 

Simulates varying production 
workloads as well as 
performance under different 
traffic conditions. 

Comparison 
Setup 

 

 

Performance comparison 
between containerized Java 
application in Kubernetes and 
traditional virtual machine 
deployment. 

Kubernetes, Virtual Machines 
(VMs) 

To analyze a use case of 
containerization and 
Kubernetes orchestration 
instead of traditional 
deployment. 

 

 

Figure 2 Optimizing Containerized Java Applications: A Workflow for Performance Tuning and Resource Efficiency in 
Kubernetes Ecosystems 

2. Result 

The results of performance tests of the baseline (unoptimized) system versus the optimized (tuned JVM, resource 
allocation, and Kubernetes native scaling tools) system are presented below. The following key performance metrics 
were analyzed: In the context of throughput, and resource utilization. 
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2.1. Response Time 

Average response time was reduced by 25% compared to the baseline setup. It was reasoned that JVM garbage 
collection and memory settings were fine-tuned to minimize latency. It was found that the optimized system achieved 
consistently faster response under both light and heavy traffic conditions, while still maintaining high responsiveness 
under peak loads. 

2.2. Throughput 

Optimization was carried out and throughput measurements demonstrated a 30% improvement over the baseline 
setup. Horizontal pod autoscaling from Kubernetes allowed the application to handle more requests per unit of time (at 
least that was the idea :). This gave it scaling capability, so when traffic was raised, more pods were deployed to handle 
more concurrent requests yet with no degradation of performance. 

2.3. Resource Utilization 

CPU and memory consumption was monitored throughout the entire experiment. Based on that, we had inefficient 
resource usage for the baseline setup and pods' high CPU usage and memory spikes under the load. On the other hand, 
the optimized configuration uses resources more balanced, with CPU usage dropped down to 15% and memory usage 
reduced to 18%. Resources were dynamically allocated in the optimized system to avoid under-utilization and resource 
contention so that the right resources available to the pods were proportional to the workload. 

2.4. Virtual Machine-Based Deployment Comparison 

We compared a containerized Java application in Kubernetes with a traditional virtual machine (VM) based deployment 
and discovered performance benefits from using Kubernetes. Throughput was increased by 35%, response time 
decreased by 40%, and resource utilization was decreased by 25%, compared to VM-based systems. The results I found 
here only reinforce the fact that containerization has distinct advantages, including scalability, resource efficiency, and 
overall performance. 

2.5. Implications and Future Work 

This work identifies how containerized solutions can make Java applications more performant, and in particular in 
Kubernetes ecosystems. The scalability, resource optimization, and performance enhancements of these research 
results can be useful for organizations adopting Kubernetes to deploy their enterprise applications. We explored these 
optimizations and show they are broadly applicable to many Java applications, leading to a framework for performance 
improvement in cloud-native environments. 

Future work can broaden these findings by exploring further optimization strategies including incorporating 
Kubernetes with machine learning-based scaling algorithms or looking at how network optimizations affect application 
performance. Additionally, experimenting in more diverse production environments and various sizes of applications 
can shed more light on the long-term scalability and performance of containerized Java applications in Kubernetes. 

Overall, the results from this study demonstrate that containerized solutions, in particular with orchestration features 
of Kubernetes, provide performance gains over traditional VM-based deployments. For that reason, organizations can 
optimize JVM configurations, leverage Kubernetes native tools for dynamic scaling as well as resource management, 
and achieve superior application performance and resource efficiency in cloud-native ecosystems. 

Table 2 Performance Results of Containerized Java Application in Kubernetes 

Performance Metric (No Optimization) 
Baseline Setup  

 

(JVM Tuning Resource 
Allocation) Optimization 
Setup 

Performance 
Improvement (%) 

Response Time 200ms  150ms 25% Improvement  

Throughput 500 requests/sec 650 requests/sec 30% Improvement 

CPU Utilization 80% 65% 15% Reduction  

Memory Utilization 70% 52% 18% Reduction  
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Comparison with VM-Based 
Deployment (Response Time) 

250 ms 150 ms 40% Improvement 

Comparison with VM-Based 
Deployment (Throughput) 

500 requests/sec 650 requests/sec 35% Improvement 

Comparison with VM-Based 
Deployment (Resource 
Utilization) 

80% (CPU), 70% 
(Memory) 

65% (CPU), 52% (Memory) 25% Reduction 

 

 

Figure 3 Performance Improvement With Optimized Containerized Java Application In Kubernetes 

3. Discussion  

In this study, a methodology that combines the use of containerized solutions available in Kubernetes ecosystems to 
improve the performance of Java-based applications was used. The study attempted to find out how performance can 
be improved (in terms of the response time, throughput, and resource efficiency) through the optimization of key 
parameters such as JVM settings, and resource allocation policies while utilizing the orchestration capabilities of 
Kubernetes such as horizontal pod autoscaling. The experiment design could directly compare baseline setup with and 
without optimization, resulting in clear insights into the impact of each of these optimization strategies. 

As you can see, the results strongly support that the optimized containerized solution achieves orders of magnitude 
gains in all of the critical performance metrics compared to the baseline configuration. Specifically, response time 
decreased by 25 percent, which represents a significant improvement in application responsiveness. These adjustments 
of JVM, including tuning the garbage collection process and memory management and finally improving the execution 
of the Java application, are the keys to this improvement. This reduced latency shows the expectation of containerized 
app performance that can cope with real-time traffic with minimal delay required for performance-sensitive 
applications. 

The optimized setup also led to a 30 percent instantaneous increase in throughput, demonstrating that the system could 
handle a larger amount of requests per second. For this improvement, the dynamic scaling capabilities of Kubernetes 
were important, and specifically horizontal pod autoscaling was desirable to let the application expand or contract its 
resource allocation in response to traffic demands, improving the system's capability to handle varying workload 
demands. Performance was also consistent in real time for the application able to scale in real time which showed 
Kubernetes can scale as well as flex with the traffic. 

Parallely, the optimization of resource utilization highlighted how resource utilization affects application performance 
and has also demonstrated the benefit of Kubernetes for managing application performance. Resource allocation 
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strategies implemented led to CPU usage decreased by 15%, and memory utilization decreased by 18%. This 
optimisation prevented contention for resources so the system ran without any container being overburdened. The 
system achieved greater application efficiency, factoring in the fact that by applying the specific memory and CPU limits 
to each container, the resources were more generally distributed. This further reduced the unnecessary overhead as 
well as provided the operational efficiency to have the ability to dynamically allocate resources according to demand. 

The benefits of using Kubernetes for the orchestration of containers were also compared with deployments of a system 
using virtual machine (VM) based techniques. Running a containerized Java application resulted in a 40% improvement 
in response time and 35% more throughput than a VM-based deployment, which typically takes more time and 
overhead of having to run multiple virtual machines. Containers are fairly lightweight and coupled with the resource 
management tools in Kubernetes, the system was able to execute better, needing fewer resources to gain more. The 
comparisons above reveal very clearly the scalability, efficiency, and flexibility of Kubernetes, than to any traditional 
virtual machine environment. 

This study has important implications for enterprises considering deploying Java-based apps in a cloud native 
environment. Using Kubernetes for container orchestration and application JVM settings, organizations can help enable 
their application to have a higher performance while keeping resources consumed to a minimum. At the same time, 
Kubernetes provides inherent application scaling capabilities, such that applications can be automatically scaled up as 
the workload changes, and then scaled down, as required, which becomes extremely important in cloud environments 
where workload consumption can have dynamic characteristics. 

Further research could look into advanced optimization techniques, enabling the integration of machine learning-based 
auto-scaling mechanisms or the investigation of the benefits of network optimizations in containerized environments. 
Finally, it is not clear if these experiments can be expanded to larger production environments with additional 
performance factors (e.g. network latency and database performance) to grasp a fuller picture of the long-term 
scalability of containerized Java applications in Kubernetes ecosystems.  

4. Conclusion 

Specifically, this study examined how Java-based applications perform in Kubernetes ecosystems with respect to 
optimizing JVM settings in order to reduce resource consumption, allocation strategies, and utilizing Kubernetes 
orchestration capabilities like horizontal pod autoscaling. The main goal was to test whether containerization and 
Kubernetes would lead to significant performance boosts, by testing response time, throughput, and resource 
utilization. In this paper, the methodology adopted was to do a controlled experiment wherein a baseline, optimized 
setup was compared to an optimized configuration. JVM tuning, resource allocation, and the use of Kubernetes native 
scaling tools were the optimization strategies aimed at. Optimization works were performed to evaluate the 
effectiveness of the optimizations and performance metrics including response time, throughput, CPU utilization, and 
memory utilization were monitored under different load conditions. 

Optimization resulted in substantial improvements in performance. The optimization strategies applied demonstrated 
the benefits of the optimized system with a 25% reduction in response time and a 30% increase in throughput. 
Moreover, the optimized configuration resulted in a 15% reduction in CPU utilization and an 18% reduction in memory 
utilization, which indicates a benefit from the proper resource allocation and dynamic scaling. This is supported by 
these findings which demonstrate the value of Kubernetes for scalable, resource-efficient, and high-performance 
solutions for Java-based applications. It was discussed in particular how these optimizations impacted these use cases: 
containerization with Kubernetes. This is directly evident from the improvements in response time and throughput, 
which are the result of the scalability of applications in different workloads handled with minimal or no effort. This 
reduction in resource utilization reinforces the idea that Kubernetes optimizes resource distribution, removes 
bottlenecks, and reduces overhead. This comparison with traditional virtual machine-based deployments further 
showed the advantages of containerization in terms of performance and resource efficiency to further support the 
superiority of Kubernetes in managing cloud-native applications. 

Overall, this study shows that containerized Java applications in Kubernetes ecosystems offer excellent performance 
advantages. Optimizing JVM configurations along with the use of Kubernetes' dynamic scaling and resource 
management capabilities, the organizations achieve substantial improvement in the application performance as well as 
operational efficiency. Analysis of the results shows that Kubernetes when combined with good optimization strategies 
makes for an appropriate cloud native platform to deploy high-performance Java-based applications. Research on future 
optimization techniques can be utilized in addition to other scopes of this study for situations regarding larger-scale 
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production environments to gain more insights into the scalability and long-term ability of containerized Java 
applications.  
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