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Abstract 

In continuous progression of Moore’s Law, modern architectures in CPU , GPU and custom chips have introduced 
different features based on the modern application of datacenters, gaming consoles and edge computing. This has 
significantly increased the complexity of design space and exponentially increased the verification space. With 
increasing competition, it is pivotal to reduce the verification cycles as well as meet the bug finding techniques tap-out 
milestone. Quality of the verification can be easily achieved with the bug finding techniques proposed in this paper. 
These techniques not only facilitate to finding bugs at early stage of design but also provide the quality metric to sign 
off the closing milestones. Further proposed method provides the evaluation and confidence in health of design based 
on the market centric workloads. 

Keywords: Firmware; Bug Finding Mechanisms; Pre-Silicon Environment; Bug finding techniques; Bug finding 
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1 Introduction 

With increasing complexity of architecture and design and competitive silicon industry, challenges in verification 
processes are equally increased. Modern architectures are catering different application needs with multi-core , multi-
die, chiplet , low power and custom chips and thus same verification process also needs to evolve based on the 
architectures as designs includes complex data paths, state machines, concurrency, complex mathematic instructions 
and branching which poses increased risk of bus, making traditional testing approaches inadequate. 

It is crucial to deploy robust verification methodology to detect and fix bugs at early stage of development cycle. 
Traditionally presilicon verification includes formal verification, simulation based verification, emulation[9] and gate 
level simulation with ultimate goal of achieving a zero buy A0 tapeout and releasing product to the market at 
earliest[1][2].  

Although Traditional verification techniques are robust enough but often lacks the real world application and user 
specific workload and hence leaves a gap for potential bugs. 

This paper underscores different traditional methods being deployed and their advantages and further showcases the 
importance of firmware-based verification to find design bugs through real world workloads. 
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2 Traditional Techniques Deployed 

2.1 Alignment of Teams Across Organizations 

Effective alignment across the teams is critical in order to meet different design milestones. The alignment involves 
staging of design features across units, verification milestones based on these design milestones through checklist item. 
In complex designs, particularly those that introduce new features or architecture, there may be cases where the 
existing DUTs are not sufficient to cover the entire design space. In such cases, additional DUTs should be created to 
ensure that new features IP specific features are verified and tested thoroughly at unit or cluster level as features are 
well contained and localized within certain part of the design and architecture. Whereas megafeatures are spread across 
the architecture and involves interoperability of the protocol interactions and algorithm and hence it is essential to test 
such features at higher levels of DUTs. For instance, compute or shader specific computation rely on the result of 
previous stage of the pipeline or shaders. [13] 

2.1.1 Divide and Conquer 

IP-Centric Feature Stress Testing 

The architectural expansion of GPUs, CPUs and custom chip design for AI accelerators has grown significantly and 
dividing such mammoth of design space into smaller IP blocks, cluster and multisubsystm is essential from design and 
verification point of view.  

Majority of the features are concentrated within specific region of design and hence verification of such design changes 
at unit or cluster level can regressively verify the functionality and performance. Such design often includes branch 
modelling, arithmetic computation, caching of the data or instruction, memory controllers[3]. Such part of the design 
can be localized within units.  

Formal verification has been instrumental to thoroughly verify such design space as it uses mathematical models to 
exhaustively check for design errors. Robustness of formal verification technique allow to find the latent bugs early in 
design cycle and thus deploying formal verification complements the traditional verification environments based on 
UVM, C++ or OVM as well as reduces dependency. Further assertions from formal are reusable in the traditional 
verification environment which further allows design checks in sanity of submission as well as regressions. However, 
formal verification techniques is not scalable to bigger design space and recent trend and research to fit design in formal 
verification environments has made good progress[1].  

2.1.2 Creating Proper Boundaries for DUTs (Device Under Test) 

Dividing the architecture into multiple verification Device Under Test (DUT) allows faster and efficient verification but 
it pivotal to form clean boundaries of the DUTs which not only allows faster simulation but also contain features 
effectively, reduces chance of interoperability of design at higher level of verification abstractions, and effective reuse 
of the verification components. Further it essential to consider the scalability of DUTs for different configurations and 
Stock Keeping Units (SKUs)[4]. 

Interoperability 

Complex architectures involve different protocols and pipelined decision making. Such pipeline decision making often 
relies on the result of previous pipeline stage. This result in numerous interoperability scenarios among different blocks 
of the design units, subsystem and pipelines.  

Such cross IP block and pipeline interactions must be thoroughly tested to insure the integration of design. Stress 
scenario of interoperability includes following  

• Stress testing of credit-hold conditions 
This can be achieved through following techniques  

o Pushing more traffic in the design 
o Synthetically holding one end of the design to not allow design to process the workload and hence 

accumulating the traffic in FIFOs, cache/storage design components which creates back pressuring 
scenarios on the ingress of the design due to limited credits.  
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o Introducing synthetic holds between design – Interaction among the design often are controlled by 
credit, acknowledgment, hold and ready signals. It is easier to either use force and release mechanism 
to hold or ready signals of the interfaces of the design and hence allowing back pressuring in very few 
cycles.  

• Dependency of a thread with another 
o In GPUs, a workload is divided into multiple threads and most of the thread poses dependency on each 

other which may result in live lock or deadlock scenario is the dependencies are not handled properly 
and hence creating dependencies among threads in testing would help to find such bugs.  

• Barrier and synchronization of threads 
o Among threads often barrier and synchronization are required to compute next stage of the workload 

and thus intervening among such threads while synchronization allows to find the bugs  
• Protocol interaction between units such as AXI, AMBA protocols  

o Protocols compliant designs functionality can be tested using negative scenario as well as credit 
exhaustions.  

• Throttling of the design performance configurations 
o For performance improvement, design operates different type of workload/messages to prioritize 

processing specific workloads and hence throttling the workload with different values may result in 
back pressuring of specific workload and helps to find the bugs.  

• Design state for different workloads  
o Specific type of the workload can be processed differently which is configured through register 

programming or state cacheline updates. For instance, GPU shaders can be processed to higher level 
of details such as tessellation levels, depth of scaling, pixel shading and color shading. Crossing 
different states at different shading can help to find cross shaders architectural bugs.  

• Flooding the pipeline with traffic on emulation platform: 
o Often stress case scenarios are manifested through bigger workload which can be run easily on 

emulation platform as simulation platform may not be able to run such traffic within short period of 
time and consumes lot of verification cycles. [9] 

Different Configurations 

Speed of the simulation is definitely a major factor in pre silicon verification stage as it not only affects the compute 
resources required during the test runs and regression but also feature bring up, debug and bug fix testing[10]. This can 
be achieved by defining the DUT boundaries. Often the architecture or System on chip (SOC) caters to different 
applications and requirements which is achieved through SKUs and configurations. While presilicon verification is 
performed at different levels of abstractions and DUTs, DUTs boundaries should be scalable to such configurations and 
SKUs, thus allowing the pre silicon verification of different configurations for different products as these configurations 
and handling feature enablement can be easily controlled through testing environments hooks.  

Feature Confinement within DUTs: 

 Feature Confinement within certain part of architecture helps to localize the design changes required and also 
verification of such features as it does not spread across different Units or subsystems. Thereby reducing the verification 
scope, risk of design bugs due to interoperability and simplifies the integration of features from firmware and design 
point of view. For example, in a GPU, the rendering pipeline might be isolated as a separate DUT from the memory 
subsystem, allowing tests to be conducted independently on each pipeline and ensuring bugs are isolated. 

Creating Additional DUTs 

Architectures across different generations of product changes dramatically due to application requirements of product 
as well as performance improvements in existing architecture. Often such changes involves newer features and may 
introduce new units/IPs and thus expanding the verification space. To effectively cover such changes in architecture, 
existing DUT boundaries can be expanded or changed or introduce the new DUTs. For example, in GPU, newer shading 
feature was introduced called “Ray Tracing” which necessitates the introduction of newer pipeline and design Ips and 
thus necessitated to not only update boundaries of existing DUTs but also introduce new DUT to effectively cover Ray 
tracing features as features associated is spread across the GPU pipeline [14].  

2.2 Checkers and Scoreboard Scalability 

Bug hunting heavily rely on not only the quality of the test but also the checkers and scoreboards which are pivotal in 
checking the design functional correctness. Often these behavior checking components are designed based on the 
requirements of the IP or cluster and hence scalability of such component while integrating at higher level of verification 
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abstraction or DUT makes it hard to reusable. Recent verification process has taken significant steps for scalability and 
reusability of such components including the assertion from formal verification as well[12]. Thus allows better checking 
process has elevated the verification quality at higher DUTs and reduced redundant work to implement high quality 
checks,  

In a multi-IP, multi-subsystem environment, scalability of checkers and scoreboards is essential. Checkers are used to 
verify functional correctness, while scoreboards track the status of different elements within the design to ensure that 
the correct data is being processed. As designs grow in complexity, verification teams must design checkers and 
scoreboards that can be reused across various DUTs and are capable of scaling to higher levels of abstraction[6]. 

By leveraging checkers and scoreboards from individual IP blocks, verification engineers can avoid redundant work and 
ensure consistency across the verification process. The key benefit of importing checkers and scoreboards is that they 
enable easier convergence of test quality across the design hierarchy. This ensures that as the design transitions from 
individual IP verification to full-system verification, the quality of the tests does not degrade. 

2.3 Test Sequence Scalability 

Tests and its associated sequences are integral and centered part of the DUTs and test planning. Traditionally nature of 
DUTs and structure of testbench has been a cause of creating testcases specifically for a particular DUTs for testing same 
feature. This offers an opportunity of creating a cohesive environment of the DUTs and likewise the test sequence which 
can be reused across the DUTs[11].  

Such scalability of Test sequence provides opportunities for reducing the engineering power required for test creation, 
check the status of such testcases at different level of verification abstractions which can help to pinpoint the roadblocks 
of design for health of particular feature and configuration further allows to verify different SKUs[7].  

2.4 Test Sequence Complexity 

Complexity of architecture poses unique challenges to stress the design space and cover the case scenarios. In order to 
create stress case scenarios , verification engineers can cross different pipelines (shaders in GPUs), features, 
configurations and size of the workload ( that will ensure multiple threads and thread dependencies while processing 
the shaders). Often with such complex test sequences, stress inducing techniques are introduced on top of such testcases 
to find corner case and back pressuring scenarios[8]. In GPUs, live lock and deadlocks scenarios are spread across due 
to dependencies of threads, shaders and pipelines. Dependencies of the threads can be managed through the 
instructions and thus introducing the levels of complexity to every testcase.  

2.5 Functional and Code Coverage 

Coverage is a quality metric of the verification which provides the progress of the design milestones, test plan 
progression and final metric while signing off the design. Functional and code coverages are two types of coverages. 
While functional coverage ensures test planning is covered and design features are exercised , code coverage provides 
insights in testing of different part of design through toggle, fsm , branch, and line coverages[5].  

Regressing different testcases allows to provide the final coverage through passing testcases. Analyzing coverage 
provides analysis of missing testcases or holes in testplans or intent of testcases and thus provides in depth 
understanding of modification required to test sequences or testplanning.  

3 Necessity of current proposal  

Although the above-mentioned techniques are covering the space of the design, it still lacks the real workload from 
users perspective, involves creating different testcases and scalability of testcases which involves curated engineering 
efforts. Real workload on any design is exercised and submitted through firmware. Running firmware usually has been 
considered a post silicon technique to test the design quality and integration of different internal and external IPs. For 
instance, running a game on GPUs creates different frames. Directly running such workload in post silicon poses a 
definite risk of expensive design issues, bug fixes and firmware based fixes for overcoming the design issues which can 
degrade the performance of the products or turning off specific features. Methodology proposes in this paper provides 
a definite solution to use firmware based workload to be used in pre silicon verification platform.  
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3.1 Proposed Methodology and Implementation 

Firmware based methodology cover the gap between synthetic testcase and real workloads. Firmware is bridge 
between a software and hardware interactions and thus breakdown the task on hand in system understandable 
commands and instructions (including kernels). Thus provide a granular understanding to hardware for processing the 

workload. This provides an opportunity to use firmware’s ability to bring the real workload to presilicon environment. 
In GPUs, while a game is played on gaming console, firmware breakdown the workload by deciding the task into smaller 
frames and frames into commands and instructions as shown in figure 1. 

 

Figure 1 In GPUs, while a game is played on gaming console, firmware breakdown the workload by deciding the task 
into smaller frames and frames into commands and instructions 

This frame can further be decided based on the commands and instructions which can be used by pre silicon simulation 
test sequences to drive the interface of DUTs as shown in below figure 2. 

 

Figure 2 Based on the commands and instructions which can be used by pre silicon simulation test sequences to drive 
the interface of DUTs 
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Perl script is used to convert commands, instructions/kernels, state cachelines and final expected dataframes into the 
cacheline in bit format which can be loaded into the design. Doorbell are initiated using UVM sequences with pointers 
of the cacheline to load the configuration and workload (3D or Compute command) to process the workloads.  

3.1.1 Command 

For confidentiality reasons following cacheline are not revealed however hypothetical command looks like below which 
is generated by perl.  

<Rending configurations><Threads Group per Command ><Threads per ThreadGroup><Command type 
(Compute/3D)><flush type> 

---------------------------------------------------------------------------------------------------------------------  

3.1.2 Instructions  

<Arithmetic command ><Operands cacheline pointers ><Thread Dependency><Valid Instruction bit> 

StateCacheline: 

<Shader type><Pipeline stage><Levels of surface rendering><Surface state rendering type><Statecacheline valid bit> 

---------------------------------------------------------------------------------------------------------------------  

4 Results 

4.1 Bugs founds 

Since this firmware-based methodology is able to close the gap between the realtime workload and synthetic content, 
this methodology was able to find bugs in designs and architectural definitions and its categorization is as follows. 

4.2 Architectural bugs 

Architectural definition was missing the pipeline threads per WGs with respect to the fifo depths while 3D and compute 
workload . Further, implementation of flushes and invalidation of across 3D and compute pipeline were flushing and 
invalidating the caches entirely although the other workload were still in progress which accounted to be performance 
issue.  

4.3 Interoperability bugs 

Interoperability bugs are defined as bug that are related to inter communication between two units. This methodology 
was able to stress the interfaces between different Units and pipelines and found bugs in the credit flow mechanisms as 
well as timing sensitive bugs in state machines due to time specific events such as preemption or change of priority 
ordering of workloads.  

4.4 Gaps found in the testplan 

Although the synthetic content was covering the planned functional and code coverage but was missing the scenarios 
of crossing different features, time critical events crossing with different features , thread dependencies and commands.  

4.5 Readily available testcases 

Since real world workload is divided up using firmware automatically , testcases are generated with minimal effort and 
are scalable to different level of abstraction of verification DUTs. This reduces redundant effort on creating and maintain 
new testcases. These testcases offers complementary to synthetic test content. Furthermore, it provides confidence on 
design for market readiness.  

4.6 Drawbacks of Firmware based Methodology 

 This method does not scale well on newer features as firmware development cycle follows the pre silicon environment, 
thus framework is not ready for newer feature until later part of the project and hence relying on the firmware, does 
not allow this methodology to newer features.  
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4.7 Improvements 

Current implementation is only able to scale down to certain extent which still runs for hours on pre silicon simulation 
and emulation environment. Further breaking down of the workload may not be possible as it needs to be broken down 
at clear boundary . Thus creating smaller standalone cases is not viable option with this methodology. Future 
improvement to this methodology can be scaled to replace the synthetic content for legacy features.  

5 Conclusion 

Pre-Silicon verification is critical in testing of hardware design and product to market cycles as it provides confidence 
in design health, however traditional verification techniques heavily rely on synthetic content and hence there can be a 
real gap between understanding of feature and feature implementations in real workload, allowing bugs to escape. 
Firmware based verification methodology in pre silicon verification covers this gap and provides testcases based on 
real workload which allows the stress the design as well as cover majority of the feature crossings. This methodology 
has been instrumental in finding interoperability and architectural bugs. 
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